DeSMET DC88
C COMPILER

MARK DeSMET

Published and Distributed by

'C WARE CORPORATION

PASO ROBLES, CALIFORNIA

DeSmet C Development Package
Version 3.1 — May, 1988

Version 3.03 — February, 1988 (DC88)
Version 3.0 — April, 1987

Version 2.5 — October, 1985

Version 2.4 — October, 1984

Version 2.3 — April, 1984

- Published by: C Ware Corporation

P.O. Box 428 _
Paso Robles, CA 93447
USA ST

(805) 239"—'4‘629 (Tech ‘Sup_p'ort/Sales)
(805) 239-4834 (Tech BBS)

Copyright © 1982 - 1988 by DeSmet Software

All rights reserved. Printed in the United States of America. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means electronic, mechanical, photocopying, recording or
otherwise without prior written permission of the publisher.

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

The author has taken due care in preparing this book and the programs and data on
the electronic media accompanying this book including research, development, and
testing to ascertain their effectiveness. The author and the publisher make no
expressed or implied warranty of any kind with regard to these programs nor the
supplemental documentation in this book. In no event shall the author or C Ware
Corporation be liable for incidental or consequential damages in connection with or
arising out of the furnishing, performance or use of any of these programs.

'DeSmet C Development Package and SEE are Trademarks of C Ware Corporation.

CP/M-86 is a Trademark of Digital Research, Inc.

IBM is a Registered Trademark 6f International Business Machines.
MSDOS is a Trademark of Microsoft, Inc. - -

UNIX is a Trademark of Bell Laboratories.

Table of Contents

Introduction
Overview 1.1
Large Case Option : : 1.3
Getting Started .
Backing Up _ 2.1
Installing The Software : 21
Installing DC88 21
Installing DC88 on a Hard Disk 24

Installing DC88 on a Floppy Disk 2.7

Installing the Large Case Option . 210
Installing Large Case on a Hard Disk 2.11
Installing Large Case on a Floppy Disk 2.12

A Short Example 2.13 |
Completion Codes ' 2.18
The SEE™ Text Editor |
Introduction 3.1
Getting Started
Concepts 32
Starting the Editor : 33
Inserting & Editing Text 34
Saving the File 3.9
Editing Existing Files 3.10
The Invocation Line 3.11
The Keyboard :
Cursor Movement Keys 3.12
Editing Keys 3.13
The DOSKey ' 3.14
Commands : 3.15
Configuration 3.31

Table of Contents

The C88 C Compiler
Introduction

Invocation
Examples

The C Language
Environment
Character Set
Trigraph Sequences
Language
Keywords
Identifiers .
Floating constants
.Integer constants
Character constants
String constants
Hardware data types
Enumerated type
Function prototyping
Preprocessor :
Conditional compilation
Source file inclusion
Macro replacement
Line control
Error
Pragma
Null
Predefined macros
Extensions
Asm
Case range
Restrictions
Forward references
Externs
Large Case Option

The ASMS88 Assembler
Introduction

Invocation
Examples

Large Case ASM88

Table of Contents

The BIND Object File Linker
Introduction

Invocation

Examples

Small Case BIND
Space Considerations
Overlays

Large Case BIND

Libraries

The LIB88 Object File Librarian
Introduction

Invocation
Examples
Libraries

The D88 C Language Debugger
Introduction

D88 Usage
Corhmand Input
Expressions
Commands

Utility Programs
CLIST: a listing & xref utility

DUMP: a hex and ascii display utility
FASTSCR: a screen output enhancer
FREE: a free space display

GREP: a file search utility

6.1
6.1
6.3
6.3
6.4
6.6
6.7

7.1
7.1
7.2
7.2

8.1
8.1
8.3
8.3
85

9.1
9.2
9.3
9.3
9.3

Table of Contents

LS: a directory listing utility : 9.4

MERGE: a C source and asseﬁlbly 9.5
language merge utility

MORE: a file screen listing utility . 9.5

PCmake: a pfogram maintainané{a utility 9.6

PROFILE: a performance monftor utility 9.9
RM: a file removal utility 9.11
SENSES7: an 8087/80287 sensing library 9.12

TOOLBOX.S: a library of useful tools . 9.14
The CSTDIO Library
Introduction 10.1
Names 10.1
Program Initialization 10.2
Calling Conventions o 104
Memory Management 10.9
Input/Output Library e 10.11
Directory Level Functions 10.11
File Level Functions . 10.11
Stream Level Functions 10.12
Handle Level Functions 10.13
Screen Level Functions 10.13
Console Level Functions 10.14
Math Library 10.15
System Interface 10.16

Environment 10.18-1

Table of Contents

Library
Headers
assert.h
ctype.h
math.h
setjmp.h
stdarg.h
stdio.h
stdlib.h
string.h
Functions & Macros
Alphabetical by name

Appendix A: Messages

ASMBS88 Messages _
Banner and Termination Messages
ASMB88 Fatal Error Messages
ASMS88 Error Messages

BIND Messages
Banner and Termination Messages
BIND Fatal Error Messages
BIND Warning Messages

C88 Messages .
Banner and Termination Messages
C88 Fatal Error Messages
(C88 Error Messages
C88 Warning Messages
C88 ASMS88 Messages

CLIST Messages
Banner and Termination Messages
CLIST Fatal Error Messages

D88 Messages

LIB88 Messages :
Banner and Termination Messages
LIB88 Fatal Error Messages
LIB88 Warning Messages

SEE Messages -
Banner and Termination Messages
SEE Error and Status Messages

10.18-2

10.18-2
10.18-2
10.18-3
10.18-3
10.18-3
10.18-4
10.18-5
10.18-6

Al
Al
A8

A9

A.10
A.l2
A.l6
A.l7

A.18
A.18
A.19
A2l

A2l
A.22

-Table of Contents

- Appendix B: The ASM88 Assembly Language

Identifiers
Constants
Expressions :
Registers :
General Registers
Byte Registers
Segment Registers
Addressing Modes
8086 Flags
Address Expressions
Address Typing
Comments
Assembler Direectives
Reserving Storage
Differences between ASM86 and ASM&8
| 8086 Instructions
Elements of Instructions
Instructions
8087
Control Word
Status Word
Tag Word

Condition Codes

8087 Instrﬁctions

B.1
B.1

B.2

Preface

This manual describes the DeSmet C Development Package for the IBM-PC
personal computer and the other MS-DOS based personal computers. If you are
unfamiliar with the C language or UNIX, the book The C Programming Language
by Brian Kernighan and Dennis Ritchie is a good place to start. If you plan on
coding in assembly language, it is advisable to get a manual on the Intel 8086
microprocessor. Books such as Intel's ASM86 Language Reference Manual or The
8086 Family User’s Guide are good choices. These manuals fully describe the
architecture and the instruction set of the 8086/8088 family of microprocessors.

We thank both the Pacific Data Works, and Scott Lewis for proofreading the many
revisions of this manual. . '

Chapter 1

Introduction

Overview 1.1

Large Case Option - 1.3

Introduction

Qverview

The DeSmet C Development Package is a set of programs and files for develdping |

applications in the C programming language for the IBM-PC personal computer
and its clones. The programs provided in this package require a minimum of 128K
of Random Access Memory (RAM) and at least one disk drive. D88 requires 192K. .
Most programs will run under all versions of DOS, 1.xx, 2.xx, and 3.xx. The
program execution profiler requires the use of DOS 2.x or later versions.

GO

CLIST cas -ASM88
.L I .0 |

LIB88 —+_S BIND CSTDIO0.S

1
EXE .CHK

Legend: <> Pragrems
1 Files PROFILE D88

The diagram above outlines the interrelationships between some of the programs
which are provided.

1.1

Introduction

SEE is a full-screen, command oriented text editor designed for program editing
rather than word processing. While SEE can edit any standand ASCII text file, its
main purpose is to produce C [.C] and Assembler source files [.A]. The compiler
C88 and the linker BIND can be invoked from SEE.

CLIST reads C source files [.C] and produces a listing file with a symbol
cross-reference.

C88 is the C compiler. It reads C source files [.C] and produces either object files
[.O] or assembler files [.A]. It supports the complete Kernighan and Ritchie C
language plus the UNIX V7 extensions — structure assignment and parameter
passing, and enumerated types. C88 supports both the Small and Large Case
memory models.

ASMS8S is the 8086/8088 assembler. It reads assembler séurce files [.A] and
produces linkable object files [.O].

BIND is the object file linker. It reads object files [.O] and library files [.S] and
produces an executable file [EXE]. BIND optionally produces the debugger
information file [.CHK] and overlay files [.OV]. The Large Case memory model
linker is BBIND.

LIBS88 is the object file librarian. It reads object files [.O] and other library files
[.S] and produces library files [.S].

D88 is the C source-level symbolic debugger. It provides access to program
variables by name, breakpoints by function name and line number, and special
support for debugging interactive programs. Source code display and stepping by
source lines are also supported.

PROFILE is the C program execution profiler. It monitors the execution of the
application program and indicates where time is spent in the program.

CSTDIO.S is the Standard Library used by BIND to provide the Operating System
and machine-level functions supported by the C language. Two libraries are
provided in the development package, one that support the 8087 math coprocessor
directly (CSTDIO7.S) and one that provides numeric support in software
(CSTDIO.S). The Large Case memory model libraries are BCSTDIO.S and
BCSTDIO7.S

1.2

. Introduction

Large Case Option .

The Large Case Option addresses the needs of programs that fit neither the standard
Small Case restrictions (64K of code, 64K of data and stack), the partitioning
requirements of overlays, nor the communication limitations of the exec function.
Its features include:

Full 1-megabyte addressability via 32-bit pointers.
Static variables combined within a single data-segment to speed access.

Large Case differs from Small Case in two aspects: pointers are four bytes long
(segment:offset) rather than two bytes (offset), and function calls are mter—segment
(segment:offset) instead of intra-segment (offset).)

There are still some memory restrictions with Large Case. No derived data object
— array or structure — may be larger than 64K. The total size of all static and
global fundamental objects (char, int, ...)mustbe lessthan 64K. The
restriction on static and global fundamental objects has to do with efficiency —
they can be accessed with the same speed as Small Case.

Large Case programs are approximately 15 per-cent larger and slower than their
Small Case equivalents. .

WARNING: LOGIC ERRORS IN PROGRAMS
USING 32-BIT POINTERS MAY BE
HAZARDOUS TO YOUR
COMPUTER!

Programs using 32-bit pointers can change any byte of memory via
pointers. Thus, improperly initialized pointers can change critical
portions of MSDOS, possibly causing corruption of, or damage to your
DISKS.

In addition, corruption of the return address or function address can

transfer control to an arbitrary location in memory, thereby activating
code that may cause corruption of, or damage to your DISKS.

1.3

Chapter 2

Getting Started
Backing Up 2.1
Installing The Software
Installing DC88 o 2.1
Installing DC88 on a Hard Disk 24
Installing C88 on a Floppy Disk 2.7
Installing the Large Case Option 2.10
Installing Large Case on a Hard Disk 2.11
Installing Large Case on a Floppy Disk ~ 2.12
A Short Example 2.13
Completion Codes 2.18

Getting Started
Backing Up

First things first. Copy all of the files from the distribution disks onto a set of
working floppy diskettes or hard disk. The disks are not copy-protected so the DOS
copy command can be used to copy the files. The package is distributed on three
DOS 2 double-sided (360KB) or one DOS 3 quad (1.2MB) diskette.The distribution
diskette(s) should never be used, they should be kept as the backup copy of the
package. .

Installing the Sdftware

The following section assumes you have two drives: a floppy disk (drive A:) and
either a hard disk (drive C:) or another floppy disk (drive B:). The system drive is
the disk your machine "boots" from, either A: or C:. All of the relevant DeSmet C
software is in the \DC88 sub-directory on the hard disk, and in the Root Directory
on the floppy disk.

Installing DC88 — There is one information and six data files in the DC88 3.1
distribution. The files, and their contents are:

BIN.EXE - An archive of executable files, containing
ASMB88.EXE: The 8088 assembler.
BIND.EXE: The object file linker.
BUF128 EXE: 128 byte type-ahead buffer program.
BUGS!EXE: Arcade game (use 'BUGS! c¢' for color displays).
C88.EXE: The first pass of the C compiler.
CLIST.EXE The C listing and cross-reference utility.
COMPARE.EXE: The source code comparison utility.
D88.EXE: The C source-level symbolic debugger.
DUMP.EXE: The hex file display utility.
FASTSCR.EXE Screen output speed-up.
FREE.EXE Disk free space display
GEN.EXE: The second pass of the C compiler.
GREP.EXE A file search utility '
LIB88.EXE: The object file librarian.
LIFE.EXE: Full screen game of Life.
LS.EXE A directory listing utility
MERGE.EXE A C source and assembly langnage merge utility
MORE.EXE A file listing utility
PCMAKE.EXE A program maintenance utility
PROFEND.EXE: Used by PROFILE.EXE.
PROFILE.EXE: The program execution profiler.
PROFSTAR.EXE: Used by PROFILE.EXE.
RAM.COM: RAM Disk driver for DOS 2 and later systems.
RM.EXE A file deletion utility
SEE.EXE: The full-screen editor.
TOOBJ.EXE .0 to .OBJ converter.

2.1

GRAPHICS.EXE

GRAPHICS.NEW

GRAPHICS.DOC
GRAPHICS.CGA
GRAPHICS.HGA

INCLUDE.EXE

ASSERT.H
CTYPEH
DOS.H
FLOAT.H
LIMITS.H
MATHH

. SETIMP.H
STDARG.H -
STDIO.H
STDLIB.H
STRING.H

LIB.EXE

C88.LIB
C887.LIB
CSTDIO.S
CSTDIO7.S
LLINK.BAT
SENSES7.S
TOOLBOX.S

OBJ.EXE

C.OBJ
COMPARE.O
D88.0
DSBREST.O
EXEC.O:
EXEC.OBJ
MSVER1.O
SEE.O

Getting Started

An archive of text and library files, C_ontaining

New release information

‘Graphics documentation

Small-case graphics for the CGA
Small-case graphics for the Hercules Adaptor

An archive of text files, containing

Diagnostic include file.

_Character handling in¢lude file.

DOS function include file.
Floating-point constants include file.
Character and numerical limits include file.
Mathematics include file.

Non-local jump include file.

Variable argument include file.
Input/output include file.

General utility include file.

String handling include file.

An archive of librar'y files, containing

Software F/P LINK library.

8087 LINK library.

Software F/P BIND library.

8087 BIND library.

LINK typical batch file.

8087-sensing upgrades to CSTDIO.S
Utility funcuon hbrary . -

An archive of object files, containing

LINK start-off code.

Object Code form of comparison utility.

Object version of D88 — part 1.

Object version of D88 — part 2.

The Exec() and Chain() functions. ,
Object code for exec () and chain () functions.
Object code for DOS 1 I/O functions.

Object code of the SEE editor

22

Getting Started

SRC.EXE An archive of source files, containing
BUF128.A: Source code for BUF128.EXE.
C.ASM Source code for runtime start-up function.
CB.C: Source code for a brace matching program.
CLOCK.C Source code to display clock face.
CONFIG.C Source code for screen functions
DUMP.C: Source code for DUMP.EXE.
FLIP.A D88 screen Flip source code.
ISETUP.A Source code for runtime start-up function.
LATER.C: Source code for a file modification-date utility.
LIFE.C: Source code for LIFE.EXE.
PCIO.A INT 10H screen interface source code.
RUBRBAND.C Line drawing source code.
STUB.ASM LINK example source code.
TDRAW.C Med-res drawing test.
TGETPUT.C Screen area get/put test.
TXDRAW.C High-res drawing test.

VERSION.DOC - Contains the latest information about the release and its

contents.

If you have the 1.2MB disk format, all the files will be on the one disk. If you have
the 360KB disk format, the files are on the following disks:

Disk #1 BIN.EXE, INCLUDE.EXE, and VERSION.DOC
Disk #2 GRAPHICS.EXE, LIB.EXE, and OBJ.EXE
Disk #3 SRC.EXE

Each of the archive files can extract some, or all, of its contents. For exémple, to
extract all of the SRC.EXE archive file enter

src

To extract, say, just the PCIO.A file from the SRC.EXE archive, enter

src pcio.a

If the package is to be run on a system other than an IBM PC, XT, AT, PCjr or
PC-clone, the screen interface for SEE must be configured before it can be used.
See the notes in the file CONFIG.C in the SRC.EXE archive for details.

23

In

Getting Started

Iling D naHar

1. For systems utilizing DOS 2 or'later versions of the operating systems,

make sure that the ASCII text file CONFIG.SYS exists in the Root
Directory of your system disk (C:). If it doesn't exist, you can create it
with SEE (If you don't know how to use SEE look at the example in this
chapter).

Cc: '
cd \
see config.sys
The file must contain the line:
FILES=20

since DC88 supports 20 open files — stdin, stdout, stderr, stda'ux, stdprt
and 15 other files. The default number of eight is insufficient for the
BIND program. If there is enough memory-available, add the line:

BUFFERS=20

to improve file performance in the operating system 512 bytes are
allocated for each buffer spe01f1ed

If you have a system with more than 256KB of memory, then the Ram Disk

driver RAM.COM can be used to create an extremely fast disk. To add the
Ram Disk, extract RAM.COM from the BIN.EXE archive

‘a:tbin ram.com
and add the line

DEVICE=RAM.COM n

to CONFIG.SYS. The parameter n is a decimal number between 32 and
650, indicating the size of Ram Disk in KB (1024 bytes) increments.

The Ram Disk installs as the next available drive — if the highest letter

drive on your system was C:, then the Ram Disk will install as D:. Use the
DOS chkdsk command to verify the drive assignment.

24

Getting Started

. Create a sub-directory (i.e., \DC88) in the root directory of the hard disk
(e.g.,C). :

mkdir dc88
cd dc8s

. Unpack the BIN, INCLUDE, LIB and OBJ archives to DC88.
¢ Disk #] — 1.2MB & 360KB format.

a:bin c88.* gen.* asm88.* bind.* d88.* see.*
a:include '

» If you wish to use LINK

a:bin toobj.exe

» If you have the 360KB format, insert Disk #2 in drive A:

‘e If you wish to create programs that use only hardware F/P

a:lib cstdio7.s
ren cstdio7.s cstdio.s

else, if you wish to create programs that use only software F/P
a:lib cstdio.s
else, if you wish to create programs that use either F/P
a:1lib cstdio.s sense87.s
ren *.s *.0
1ib88 sense87 cstdio -ocstdio

del cstdio.o
del senseB7.o

+ If you wish to use LINK
a:obj c.obj exec.obj
If you wish to create programs that use only hardware F/P
a:lib c587.lib

else, if you wish to create programs that use only software F/P

a:lib c88.1lib

25

" Getting Started

. Be sure to change the Bind Flags in SEE (using the SET command) to
invoke LINK instead of BIND, or use the LLINK.BAT file
as model for linking.

« If you want your library to use only DOS 1 functions

a:obj msverl.o

ren.cstdio.s cstdio.o]
1ib88 msverl cstdio =~ocstdio
del cstdio.o

del msverl.o

3. If you wish to use the Graphics Package, print the manual and text
a:graphics graphics.doc graphics.new -
copy graphics.* prn -
del graphlcs *

If you have a Color Graphics Adaptor (CGA), extract its library

a: graphlcs graphlcs cga
ren graphics. cga libg.s

If you have a Hercules Adaptor (HGA), extract its 11brary

a:graphics graphics.hga
ren graphics.hga libg.s

4. If you have a machine other than an IBM or close clone copy.

a:0bj see.o d88.o dBBrest.o compare.o

If you have the 360KB format, insert Disk #3.

If your machine emmulates the IBM ROM BIOS 1nterrupt 10H then
recreate SEE, D88, & COMPARE

a:src pcio.a

asm88 pcio

bind see pcio -osee

bind d88 d88rest pcio —-od88
bind compare pcio —ocompare

2.6

Getting Started

.otherwise modify CONFIG.C for your particular display, then recreate
SEE, D88, & COMPARE ‘

a:src config.c

edit config.c

c88 config

bind see config -osee

bind 488 d88rest config -od88 -
bind compare config —-ocompare

Delete see.o, d88.0, d88rest.o, and compare.o.

5. Modify AUTOEXEC.BAT to specify the location of DC88'comigonents
and include files. . -

see \autoexec.bat

The DC88 components are specified in the PATH environment variable.
Add the c:\dc88 sub-directory to the existing PATH specification, or
create a PATH specification. See your DOS manual for information on
specifying the PATH variable.

The DC88 include files are specified in either the DSINC or the
INCLUDE environment variable. ‘Add either the set DSINC=c:\dc88\
or the set INCLUDE=c:\dc88\ line to the AUTOEXEC.BAT file. See
Chapter 4 — The C88 C Compiler — for more information on the
specifying the search path for DC88 include files.

6. Re-boot the system.

1. Create a System Disk on drive B:

format b:/s
copy format.com b:

2. Put the System Disk in drive A: and DC88 Disk #1 in drive B: For systems
utilizing DOS 2 or later versions of the operating systems, create the ASCII
text file CONFIG.SYS in the Root Directory of your system disk (A:).
You can create it with SEE (If you don't know how to use SEE, look at the

example in this chapter).

b:see config.sys

2.7

Getting Started:
The file must contain the line:
FILES=20

since DC88 supports 20 open files — stdin, stdout, stderr, stdaux, stdprt
and 15 other files. The default number of eight is insufficient for the
BIND program. If there is enough memory available, add the line:

BUFFERS=20

to improve file performance in the operating system. 512 bytes are
allocated for each buffer specified.

If you have a system with more than 256KB of memory, then the Ram Disk

driver RAM.COM can be used to create an extremely fast disk. To add the
Ram Disk, extract RAM.COM from the BIN.EXE archive

b :bin ram Jcom
and add the line
 DEVICE=RAM. COM 0

to CONFIG.SYS. The parameter n is a demmal number between 32 and
650, indicating the size of Ram Disk in KB (1024 bytes) increments.

The Ram Disk installs as the nextava11ab1e drive — if the hxghest letter
drive on your system was B:, then the Ram Disk will install as C:. Use the
DOS chkdsk command to verify the drive assignment.

2. Unpack the BIN, INCLUDE, LIB and OBJ archives to the system disk.
. Disk #1 — 1.2MB & 360KB format.

b:bin c88.* gen.* asm88.* bind.* d88.* see.*
b:include

« If you wish to use LINK

b:bin toobj.exe

« If you have the 360KB format, insert Disk #2 in drive B:

2.8

Getting Started
If you wish to créate programs that use only hardware F/P

b:lib cstdio?.s
ren cstdio7.s cstdio.s

else, if you wish to create programs that use only software F/P
b:1lib cstdio.s
else, if you wish to create programs that use either F/P
b:1ib cstdio.s sense87.s
ren *.s *.,0
1ib88 sense87 cstdio —ocstdio

del cstdio.o
del sense87.0

If you wish to use LINK
b:obj c.obj exec.obj

If you wish to create programs that use only hardware F/P
b:1lib c¢887.1ib

else, if you wish to create programs that use only sqft&mc FP
b:li}s c88.1ib |

Be sure to change the Bind Flags in SEE (using the SET command) to
invoke LINK instead of BIND, or use the LLINK.BAT file as model
for linking.

If you want your library to use only DOS 1 functions

b:obj msverl.o

ren cstdio.s cstdio.o

1ib88 msverl cstdio -ocstdio
del cstdio.o

del msverl.o

3. If you wish to use the Graphics Package; print the manual and text

b:graphics graphics.doc graphics.new
copy graphics.* prn
del graphics.*

29

_Getting Started
If you have a Color Graphics Adaptor (CGA), extract its libfary

b:graphics graphics.cga
ren graphics.cga libg.s

If you have a Hercules Adaptor (HGA), extract its library

b:graphics graphics.hga
ren graphics.hga libg.s

4, If you have a machine other than an IBM Qr'félose clone copy.

b:obj see.o d88.o d88rest.o compare.o

If you have the 360KB format, insert Disk #3. -

- If your machine emmulates the IBM ROM BIOS interrupt 10H, then
recreate SEE, D88, & COMPARE

b:src pcio.a

asm88 pcio

bind see pcio -osee

bind d88 d8B8rest pcio —-od88
bind compare pcio —ocompare

otherw1se modify CONFIG.C for your particular d1splay, then recreate
-SEE, D88, & COMPARE

b:src config.c

edit config.c -

c88 config

bind see config -osee

bind 488 d88rest config -o0d88
bind compare config —ocompare °

Delete see .o, d88.0, d88rest .o, and compare.o.

5. Re-boot the system.

Installing the Large Case Option

The Large Case Option is distributed on a single 5 1/4 inch floppy diskettes,
containing:

B88.LIB: Large Case DOS LINK C Library (non-8087)
B887.LIB: » Large Case DOS LINK C Library (8087)
BBIND.EXE: Large Case Binder.

2.10

Getting Started

BC.ASM Large Case DOS LINK start-up source code

BC.OBJ Large Case DOS LINK start-up object code

BCSTDIO.S Large Case C Library (non-8087)

BCSTDIO7.S Large Case C Library (8087)

BEXEC.O Large Case exec () and chain () functions.
BEXEC.OBJ Large Case DOS LINK exec () and chain () functions.

BGRAPHIC.CGA Large-case graphics for the CGA
BGRAPHIC.HGA Large-case graphics for the Hercules Adaptor
BLLINK.BAT Large Case DOS LINK

BSTUB.ASM Large Case DOS LINK MASM example

Place the Large Case Option disk in drive A:
copy a:*.exe c:\dc88

If you have a 8087 coprocessor

copy a:bcstdio7.s c:\dc88\becstdio.s
otherwise
copy a:bestdio.s c:\dc88
If you are using LINK
copy a:*.obj c:\dc88
If you have a 8087 coprocessor
copy a:bc887.1ib c:\dc88\bc88.1lib
otherwise
copy a:bc88.1lib c:\dc88

Be sure to change the Bind Flags in SEE (using the SET command) to invoke
BBIND or LINK instead of BIND, or use the BLLINK.BAT file as model for
linking.

If you are using the Graphics Package with a Color Graphics Adaptor
copy a:bgraphic.cga c:\dc88\blibg.s
otherwise

copy a:bgraphic.hga c:\dc88\blibg.s

2.11

Getting Started |

Installing Lar n a Floppy Di

Place the Large Case Option disk in drive B: and the DC88 System Disk in drive A:
and copy the following files: - ‘

copy b:*.exe
If you have a 8087 coprocessor
copy b:bcstdio7.s becstdio.s

otherwise
copy b:bcstdio.s

If you are using LINK
copy b:*.obj a:
If you have a 8087 coprocessor
cépy b:bc887.1ib bc88.1ib
otherwise
copy b:bc88.1ib

Be sure to change the Bind Flags in SEE (using the SET command) to invoke
BBIND or LINK instead of BIND, or use the BLLINK.BAT file as model for

linking.

If you are using the Graphics Package with a Color Graphics Adaptbor
copy b:bgraphic.cga blibg.s

otherwise

copy b:bgraphic.hga blibg.s

2.12

Getting Started
A Short Example
This example shows the general method for creating executable programs with this
package. It assumes that the disk in the default drive, in this case drive A:, contains
the compiler (C88.EXE and GEN.EXE), the assembler (ASMB88.EXE), the binder

(BIND.EXE), the standard library (CSTDIO.S) and the text editor (SEE.EXE).
The source code will reside on drive B:.

Enter the example program with the SEE text editor. To start the SEE text editor,
type:

see b:example.c

The screen will look as follows:

(Again Buffer Copy Delete Find -find Get Insert Jump -space- \
-- reading file: b:example.c...--new file 0 characters

Figure 2-1
See™ Inijtial Screen

213

Getting: Started

Other than the header, fboter, and this'sehtehc‘e, -t'hiS page is intentionally blank.

2.14

Getting Started

Type the letter 'T', or press the 'Ins' key, to put the editor into Insert mode. Now
type in the following program: -

main() {(<Ret>

<Tab>printf("%d plus %d is %d\a", 2, 2, 2+2);<Ret>
<Tab>}<Ret>

<Esc>

Note that the items <Tab>, <Ret>, and <Esc> indicate the Tab, Return, and Esc
keys, respectively. The <Esc> will terminate insert mode and return the editor to
command mode. The screen should now appear as follows:

ngain Buffer Copy Delete Find -find Get insert Jump -spaceT\

main(){
printf(%d plus %d is %d\n", 2, 2, 2+2);
}

Figure 2-2
Program Display

To compile the program just entered, type the sequence of characters, 'Q’ for Quit
and 'C' for Compile. This will start C88 using the file in memory. The computer
will display:

2.15

Getting Started

(Compillng i -

main(){
printf(%d plus %d Is %d\n", 2, 2, 2+2);
}

Figure 2-3
Compiling from SEE

The message "Compiling ..." replaces the first line of the display. If there are
errors during the compilation, the error message will appear on the second line of
the display, and the cursor will be on the error line. You can correct the error and
recompile. If there are no errors BIND will be invoked. The screen appears as
follows:

(Binding ... _)

main(){
printf(%d plus %d is %d\n", 2, 2, 2+2);
}

Figure 2-4
Binding from SEE

2.16

Getting Started

If there are any errors, they will be displayed on the message line. To run the
program, press esc to escape from the Quit menu and press the F9 key to
invoke a new DOS shell. At the prompt, enter

b:example

to invoke the program. The screen will look something like:

1d Again Buffer Copy Delete Find -find Get Insert Jump -spaceT

maln(){
printf(%d plus %d is %d\n", 2, 2, 2+2);

DOS Ver 3.0 Copyright

2ol 2 s
us 8 .
Nt y
Figure 2-5
Executing example Program
To return to SEE type
exit

at the DOS propmpt. You will be returned to the SEE display.

If you wish to save the file to disk, type 'Q' (Quit) followed by an 'S’ (Save-exit).
The file will be saved, and control will be returned to DOS.

2.17

Getting Started

COmpletion Codes '

The C88, ASM88, BIND and LIBSS8 programs set the completion code to:

0 if no warnings or errors occurred,
1 if warnings were issued, and
2 if errors occurred.

Batch files can take advantage of these values to stop execution or otherwise handle
these exceptional cases.

The batch file CC.BAT listed below will stop if C88 or BIND reports an error:

c88 %1

if errorlevel 1 goto stop
bind %1

if errorlevel 1 goto stop
%1)

:stop

More complicated development situations can be handled with the program LATEP
which is supplied in source form in the file LATER.C. LATER takes a list of
filenames as arguments. It sets the errorlevel to one if the last file does not exist or
if the last file has an earlier modification date than any other file in the list. It can
only be used on systems with a battery backup clock or where users are careful
about setting the date and time when the system is brought up. Assume a program is
composed of the files moda.c, modb.c, modc.c and the include file mod.h. The
following .BAT file can be used to regenerate the program whenever a module
changes: _

later moda.c mod.h moda.o

if errorlevel 1 c88 moda

if errorlevel 1 goto stop

later modb.c mod.h modb.o

if errorlevel 1 c¢88 modb

if errorlevel 1 goto stop

later modc.c mod.h modc.o

if errorlevel 1 c88 mode

if errorlevel 1 goto stop

later moda.o modb.o modc.o mod.exe
if errorlevel 1 bind moda modb modc ~omod
:stop

This provides a service similar to the UNIX MAKE program. Only those files that
need to be compiled will be compiled. '

2.18

Chapter 3

The SEE™ Text Editor

bt d pd
SN

L =lii=lie o Jo o 0N Ne We Wo We WE

Introduction 3.1
Getting Started
~ Concepts 3.2
Starting the Editor 33.
Inserting and Editing Text 34
Saving the File 3.9
Editing Existing Files 3.10
The Invocation Line 3.11
The Keyboard
Cursor Movement Keys 3.
Editing Keys 3.
The DOS Key 3.
Commands 3.1
Again 3.1
Buffer 31
Copy 3.1
Delete 3.1
Find 3.1
-Find 3.1
Get 3.1
Insert 3.1
Jump 3.1
List 3.1
Macro 3.1
Other 3.20
Put 3.20
Quit 3.20
Replace 3.23
Set 3.23
Tag 3.30
Version/View 3.30
Wrap 3.30
Xchange 3.30

Commands (cont.) |

{300
\

Configuration

3.31
3.31
3.31

3.31

The SEE™ Text Editor

Introduction

SEE is a general purpose full-screen text editor designed for program entry rather
than word processing. It features:

invoking the compiler (C88) and the binder (BIND) from the edltor —
errors return control to the editor at the error line, :
invoking a copy of the shell (COMMAND. COM) to provide access to
DOS functions,

handling files larger than available memory,

editing two files simultaneously,

viewing the two files either on separate screens, or in two windows on
the same screen, '
a macro facility which allows you to capture a series of keystrokes and
replay them to ease repetitive tasks,

automatic indentation,

brace/bracket/parenthesis matching to ease program entry,

SEE is shipped configured for the IBM-PC and its clones. SEE may be
reconfigured to run on other machines which support DOS but have different
keyboard and/or screen interfaces than the IBM-PC (see Section 3.6).

3.1

The SEE™ Text Editor

Getting Started

Concepts

- SEE does not directly manipulate a file on the disk. It brings a copy of the file into
memory and performs all work on this internal copy. The file on the disk is not
modified until the copy in memory is stored on the disk. If the file is larger than the
internal buffer area, SEE will open "spill" files to swap the edited text in and out of
memory. For this reason, you should not have any files named SEETMP.###,
where ### is a series of three digits (currently restricted to 000, 001, 002, 003, and
004).

Commands are executed by typing the first letter of the command displayed on the
menu line (the first line on the screen). For example, to execute the Delete
command, simply type the letter 'D’; the case of the letter does not matter.

Whenever a block of text is deleted with the Delete command, the text is placed ina
special area known as the copy buffer. Blocks selected with the Buffer command
are also placed in this buffer. When the Copy command is used, the contents of this
buffer is inserted into the text at the cursor location. The copy buffer is maintained
as long as the editor is running and is shared by both files (if two files are being
edited). This is the mechanism used to move text from one location to another or
from one file to another. :

The cursor indicates the location where all action will occur. It will be in one of
three states: a double-bar cursor indicating command mode, a single-bar cursor
indicating Insert mode or a block cursor indicating Exchange mode. The cursor is
always visible on the screen. As the cursor is moved to an edge of the screen, the
screen will scroll the text to keep the cursor in view, both vertxcally and
horizontally. For example, if the cursor is moved down when it is on the last line of
the'screen, the screen will be scrolled up one line to show the line the cursor is on.
Similarly, when the cursor is in the rightmost column of the screen and the cursor is
moved to the right (assuming the line has more characters not currently displayed
on the screen), the screen will be scrolled to the left by 15 columns to show the new
location.

32

The SEE™ Text Editor
Stafting the Editor
To start the editor to edit a new file named ‘ergo’, simply type:
see ergo

and the computer should respond with the screen:

Agein Buffer Copy Delete Find ~find Get Insert Jump --space--
----- reading file: ergo ... -- new file O characters

The top line on the display is the mg_nu_lmg This line displays the current mode of
the editor and the commands available at any given time. In this first screen, the
menu line contains the first set of commands available at the command level:

Again Buffer Copy Delete Find -find Get Insert Jump --space--
Hitting the space bar displays the second set of commands:

List Macro Other Put Quit Replace Set Tag Wrap Xchange --space—-

Hitting the space bar again will redisplay the first set of commands. The commands
are fully described in Section 3.5 of this manual. Each command may be executed
by typing the first letter of its menu item; for example, A for Again, B for Buffer
etc, The case of the command letter is pot important.

The second line of thc screen is used to display messages and status from the various
commands and is naturally called the message line. The message "ergo ... -- new

33

The SEE™ Text Editor

file 0 characters” indicates that the file ergo has not been found and that the internal
file buffer is empty.

Inserting} and Editing Text

To insert text into the file, we must enter Insert mode. Do this by either typing the
letter 'T' to execute the insert command, or by pressmg the Ins key. The screen
should now look as follows: .

Insert: <cursor keys>, Esc to exit, Ins for Exchange
----- reading file: ergo .. -- new file O characters

Note that the menu line has changed to indicate the types of actxons, other than
inserting text, that may be performed Any character now typed, except for one of
the special keys described in Section 4, will now be inserted into the text at the
cursor location, just prior to the character that the cursor is on.

Now type in the lines:
These are a few lines <Return>
of example text to shoe<Backspace>w<Return>

the editing capabilities of the SEE editor. <Return>
<Esc>

3.4

The SEE™ Text Editor

The screen should now look as follows:

Again Buffer Copy Delete Find -find Get Insert Jump --space--
These are a few lines
of example text to show
the editing capabilities of the SEE editor.

Note that the symbols <Return>, <Backspace>, and <Esc> represent the use of the
return, backspace, tab, and Esc keys, respectively. The <Return> inserts a
carriage-return, line-feed (CRLF) sequence into the file to begin a new line and the
cursor moves down one line and to the left side of the screen. The <Backspace> key
deletes the character preceding the cursor. The <Tab> key inserts a tab character
into the file which is expanded to the next tab stop. Tab stops, by default, are located
every four characters, however this value may be changed in the Set command. The
<Esc> key breaks the editor out of Insert mode and places it back in command
mode.

The cursor keys are used to move the cursor around the screen in small increments.
Press the up-arrow key twice to move the cursor up to the beginning of the second.
line. Press the right-arrow key three times to move the cursor to the beginning of
the word ‘example’. Type the letter 'T' to put the editor into Insert mode and type
the word 'some’ without the quotes and add a blank. Note that as each character is
typed, the rest of the line is "pushed"” to the right. The screen should now look as
follows: :

35

The SEE™ Text Editor

Insert: <cursor keys», Esc to exit, Ins for Exchange

These are a few lines
of some example text to show
the editing capabilities of the SEE editor.

Now hold down the control key (Ctrl) and press the right-arrow key three times.
Note that the cursor jumps from one word to the next when using this combination
of keys. See Section 4 for full details on all of the special keys. Also note that the
editor does not have to be in command mode to use the cursor movement keys. Now
hit the Ins key to change from Insert mode to Exchange mode; the menu line will
display Exchange instead of Insert. In Exchange mode, the character at the cursor is
overwritten by the new character rather than having the character inserted into the
file. The only exception to this rule is when the cursor is positioned at the end of a
line, characters are inserted rather than overwriting the CRLF end-of-line

sequence. Exchange mode can also be entered from command mode by typing the
letter X' for Xchange. Type the word 'display’' and notice how the word 'show' is
overwritten with the new word 'display’. Press the Esc key to go back to command
mode. The screen should now look as follows: '

3.6

The SEE™ Text Editor

Again Buffer Copy Delete Find -find Get Insert Jump --space--

These are a few lines
of some example text to display_
the editing capabilities of the SEE editor.

Press the Home key and note the location of the cursor. To delete this line, invoke
the Delete command by typing the letter ‘D', move the cursor down one line with
the down-arrow key, and type the letter 'D’ again to complete the deletion (the Esc
key will also work). The second line has been deleted and placed in the copy buffer.
Now type the letter 'C' to invoke the Copy command to retrieve the text that was
deleted. Type the letter 'C' again and a second copy of the line is inserted. The copy
buffer always contains the last Deleted or Buffered block of text. The screen should
now look as follows:

Again Buffer Copy Delete Find -find Get Insert Jump --space--
These are a few lines

of some example text to display

of some example text to display

the editing capabilities-of the SEE editor.

37

The SEE™ Text Editor

To find the first occurrence of the word 'display’, press the letter 'F' to invoke the
Find command. Type in the word 'display’ (without the quotes) and press either Esc
or Return to begin the search. The cursor should now be positioned after the word
‘'display’ on the second line. To replace the next occurrence of the word 'display’
with the word 'show', press the letter 'R’ to invoke the Replace command. Notice
that the previous search string 'display’ now appears on the message line. Since this
is the string to be replaced, simply press the Esc or Return key to select the string
(rather than retyping the string). Type in the string ‘show’ and hit the Esc or Return
key to execute the command. Press the Home key twice to move the cursor to the
top of the screen. The screen should now appeéar as follows:

Again Buffer Copy Delete Find -find Get Insert Jump --space--

These are a few lines

of some example text to display

of some example text to show

the editing capabilities of the SEE editor.

Another useful feature in SEE is its ability to record a series of keystrokes,
command, cursor keys, etc., and replay them on command. These recordings are
«called macros. To create a macro, type ‘M’ to invoke the Macro command, type

'R’ to indicate that a recording is to be made, and select the function key (F1 through
F8) that is to be used to invoke the macro. In this example, press the F1 key. The
message line now displays the line:

recording. Macro F1, use Macro key to complete recording

This message will be displayed after every command to indicate that a macro
recording is in progress. Now, any commands or special keys typed will be

338

The SEE™ Text Editor

recorded into the macro until the Macro command is executed once again: For this |
example, execute the following commands: '

I@<Esc><control right-arrow>M

Macro F1 is now defined to insert the '@’ character in front of each word. To
execute the macro, press the F1 key. To execute the macro a fixed number of times,
say five times, type the number 5 and then the function key F1. The macro is
executed five times. To execute the macro for the rest of the words in the file, type
in a large number or use the more convenient /' character to indicate the number
32767, the largest number. Type '/’ and press the F1 key. The screen should now
appear as follows:

Again Buffer Copy Delete Find -find Get Insert Jump --space--
@These @are @a @few @lines

@of @some @example @text @to @display

@of @some @example @text @to @show

@the @editing @capabilities @of @the @SEE @editor.

@.

Saving the File

Recall that all of the editing was performed on the file in memory. This copy of the
file must be written out to the disk. Type the letter ‘Q’ to enter the Quit menu. The
choices under the Quit menu are:

BAKup Compile Exit Initialize Save-exit Update Write

Each menu item is explained in detail in Section 5 under the Quit command. Press
the letter 'S’ to save the memory copy of the file to the disk file named 'ergo’- which
was entered at the beginning of this example. This selection will also terminate the
editor.

3.9

The SEE™ Text Editor

'Editing Existing Files
Now to edit the file ergo again, simply type the line:
see ergo

The editor will be loaded and will attempt to load thé file ergo. If the file was
loaded correctly, the screen should appear as follows:

Again Buffer Copy Delete Find -find Get Insert Jump --space--
----- reading file: ergo ... 156 characters ‘
@These @are @a @few @Hnes

@of @some @example @text @to @display

@of @some @example @text @to @show

@the @editing @capabilities @of @the @SEE @editor.

@

Type 'Q' to select the Quit command and then type 'E' t6 exit from the editor
without writing the file out, since nothing has changed.

You now have a basic understanding of how to edit files with the SEE editor.
Practice editing other files using the skills developed in this example. Don't be
afraid to experiment. Remember that as long as you don't write the file back out to
the disk, the old copy is safe. When you are comfortable with these editing features,
look through the rest of the manual to see what else can be done and experiment with
some new features.

3.10

The SEE™ Text Editor

The Invocation Line-

There are a few different options available when starting the SEE editor. Invokixig
SEE with the command line:

see

will bring up the editor with an empty buffer and no filename specified. To save the
file to disk, use the Write option under the Quit command described in Section 5.

Invoking SEE with thé command line:

see <filename>
will have the editor load the file <filename> if it exists. <filename> will be used by
the Update and BAKup options in the Quit command. If the file doesn't exist, SEE
will act as if it existed but was a zero length file. Note that the file is not created
until it is written out to disk.
Invoking the editor with the command line:

see <filenamel> <filenamel2>

will have the editor load the text from <filenamel> but will write out the text to
<filename2>. <filenamel> will not be altered by the edit session.

Adding the -1 option to the command line:
see <filename> -lnnnn

will have the editor load the text from <filename1> and start editing at line nnnn .
The -1 option works with either filename configuration.

3.11

The SEE™ Text Editor

The Keyboard

This section describes the special keys used by the SEE editor as defined for the
IBM-PC keyboard. If the editor has been reconfigured for a different keyboard,
you will have to map the reconfigured keys to the IBM-PC keys to understand the
following documentation.

Cursor Movement Keys

In the following descriptions, the caret (%) preceding the name of the key indicates
that the control (Ctrl) key must be held down while the key is pressed.

Home:

"Home:

End:

AEnd:

PgUp:
APgUp: v
PgDn:

"PgDn:

UpArrow:

When the Home key is pressed once, the cursor will move to the
beginning of the current line (the line that the cursor is currently on).
If the Home key is pressed twice in succession, the cursor will move
to the beginning of the first line on the screen. :

When the control key is held down as the Home key is presSed, the
cursor will be moved to the beginning of the first line of the file.

When the End key is pressed once, the cursor will move to the end of
the current line (posmoned just before the CRLF end of line
sequence). If the End key is pressed twice in succession, the cursor

~will move to the beginning of the last line on the screen.

With the control key held down, the End key will move the cursor to
the end of the file.

Moves up twenty lines of text and iédispiagrg fhe screen.

Scrolls the scréen, up one line without.x_ﬁoving the cursc")r_.

Moves down twenty lines of text and redisplays the screen.

Scrolls the screen down one line without moving the cursor.

The up-arrow key moves the cursor up one line. The column that the
cursor is in remains the same. If the cursor is posmoned beyond the

end of a line because of this action, the visible cursor is shown beyond
the end of the line but is logically located just before the CRLF

3.12

T_he SEE™ Text Editor

sequence (The cursor is moved to this location when some other

- operation is performed.) If the cursor is already on the top line of the

DownArrow:

LeftArrow:

ALeftArrow:

RightArrow:

screen, the screen is scrolled down one line to show the new line.

The down-arrow key moves the cursor down one line. Again, the
visible cursor remains in the same column as described above. If the
cursor is already on the last line of the screen, the screen is scrolled
up one line to show the new line.

The left-arrow key moves the cursor one character to the left. If the
cursor is at the left edge of the screen, and the screen has been
scrolled to the right, the screen will scroll back to the left by 15
character locations to show the new cursor position. If the screen had
not been scrolled implying that the cursor was on the first character
of the line, the cursor moves to the end of the previous line.

With the control key held down, the cursor will move to the left in
word increments rather than character increments. Each time this
combination is pressed, the cursor will move to the first character of

“the previous word where word is defined as a sequence of letters or

digits. Any other character separates the words.

The right-arrow key moves the cursor one character to the right. If
the cursor is at the right edge of the screen and more text exists in the
current line, the screen is scrolled to the right by 15 characters to
show the new location. If the cursor was positioned at the end of the
line, then the cursor is moved to the beginning of the next line.

ARightArrow:This combination moves the cursor to the beginning of the next word.

Return:

The return key is normally used to insert a CRLF end of line sequence

- into the text, thereby positioning the cursor at the beginning of the

next line. If the return key is pressed while in command mode, the
cursor will simply move to the beginning of the next line.

Editing Keys

Backspace:

The backspace key deletes the character to the left of the cursor. If
the cursor is positioned at the beginning of a line, the CRLF sequence
is removed and the two lines are joined to form a single line.

3.13

The SEE™ Text Editor

Del: . - . The delete key deletes the character at the cursor. If the cursor is
- positioned on the CRLF end of line sequence, then the next line is
joined with the current line.

Ins: The Ins key is used to toggle between Insert and Exchange modes. At
the command level, it will place the editor into Insert mode.

F1-F8: The function keys F1 through F8 are avaxlable for user-defined
macros. Macros may be saved with the Macro-Save command.

F10: , _ If you are using a split—screen to display two files concurrently, the
F10 key will temporarily expand. the current file display to fill the
entire screen. Switching to the other file will reset to the split-screen.

AC or “Break:Holding down the control (Ctrl) key and hitting the letter 'C' or the
Break key (Scroll Lock) will normally stop the execution of a
command (where reasonable). This is useful when you decide not to
execute the Find command and are in the middle of typing in the
search string. Typing control-C will abort the Find command
without modifying the old search strmg This key combination will
also stop an executing macro.

~Return: Deletes from the cursor to the end of the line. ‘This command may be
used to ed1t the command line (e g., Find, Replace, Initialize).

The DOS Kcy

Under MS-DOS 2.0 and later versions of the operating system, the F9 function key
allows another command shell to be executed while the editor and text remain in
memory. When the F9 key is pressed, the screen will display the DOS copyright
message and will prompt for a command. You can execute any command, even
another copy of the editor (although this is not recommended because of conflicts
with the spill files). When you want to return to the editor, type the DOS command

e

exit

and the text will be redisplayed as if the F9 key never had been pressed. DOS, SEE,
and your text occupy about 128K. You must have at least an additional 64K of
unused memory in your machine to use the DOS feature.

3.14

The SEE™ Text Edjtor

Commands

In command mode, the menu line displays the commands available for editing and
manipulating the text. Since the names of the commands are too long for a single
menu line, the menu is broken into two parts. To toggle between each part of the
command menu, press the space bar. :

Again Buffer Copy Delete Find =find Get Insert Jump --space--

List Macro Other Put Quit Replace Set Tag ¥Xchange --space--

Command Menus

To invoke a command, type the first letter of the command. To terminate a v
command, press the escape <Esc> key. A command may be aborted by holding
down the control key, Ctrl, and typing the letter C (control-C).

Many commands will take a repetition count to execute the command multiple times
before completing. The repetition count takes the form of a decimal number or a
slash (indicating a very large number). It is entered prior to typing the first letter of
the command. Some commands — Find, -find, and Replace — may be given a
question mark (?) repetition count indicating that the editor should prompt after
each string is found. Note that at the command level, the cursor movement keys
may also be repeated by using a repetition count. This also means that if a mistake is
made in the repetition count, the Backspace key cannot be used to correct the
mistake. The command must be aborted .

In the following descriptions of the commands, <rep> indicates that the command
takes a repetition count and <rep | 7> indicates that it will take a repetition count or
question mark repetition count.

Commands that need further information (i.e., Find) interact with the user on the '
second line of the display — the message line. Each command that interacts on the
message line displays the current value of the information sought. You can use the
current value by pressing <RETURN>, or you can use all the editing facilities of
SEE to edit the current value before pressing <RETURN>.

3.15

The SEE™ Text Editor

<rep> Again

The Again command repeats the action of the last Find, -find, or replace command
without any prompting. For example, if a Find command is executed to locate the
string "hello", then executing the Again command will find the next occurrence of
the string "hello".

Buffer

The Buffer command is used to copy a block of text into the ¢« ffer. The copy
buffer is an internal buffer used to hold the last buffered or deleted (with the Delete
command) item. To use the Buffer command, move the cursor to the beginning of
the block to be buffered and type ‘B’ for Buffer. The character at the cursor will be
temporarily overwritten with a block to indicate the beginning of the block. The
menu line will be replaced with the new menu line:

Buffer: <cursor keys> <esc | B> BAgain Find -find Jump

Now move the cursor to the end of the block, either with the cursor movement keys
or with the Again, Find, -find and Jump commands. These commands may be
preceded with a repetition count. When the cursor is positioned at the end of the
block, press the Esc key or the letter ‘B' to terminate the buffering operation. SEE
will copy the contents of the block into its copy buffer. The previous contents of the
copy buffer are thrown away. :

<rep>_Copy.

The copy command inserts the contents of the copy buffer at the current cursor
location. If a repetition count is given, the contents of the buffer will be inserted
that many times.

Delete

The delete command is used to delete a block of text. The deleted text is placed in
the copy buffer, as mentioned in the Buffer command. To use the Delete command,
first move the cursor to the beginning of the block of text to be deleted and type 'D’
for Delete. The character under the cursor will be temporarily overwritten with a

3.16

The SEE™ Text Editor

block to indicate the beginning of the block. The menu line will be replaced with the
new menu line: :

Delete: <cursor keys> <esc | D> Again Find -find Jump

Now move the cursor to the end of the block, either with the cursor movement keys
or with the Again, Find, -find, and Jump commands. These commands may be
preceded with a repetition count. When the cursor is positioned at the end of the
block, press the Esc key or the letter ‘D' to delete the block. The text will be
removed and placed in the copy buffer.

<rep | 7> Find

The find command is used to locate the next occurrence of a given string. The
search runs from the cursor location to the end of the file. To use the Find
command, type the letter 'F for Find. The Find command will then prompt for the
search string. The last string given in a Find, -find, List, or Replace command is
displayed on the messzge line. If the same string is to be found, hit the Esc or
Return key to select the argument. Otherwise, edit the message line to create the
new search string. When the string is entered, press the backquote or Return key to
indicate completion. The Find command will then search for the next matching
string. If found, the cursor will be moved to the character following the string,
otherwise the message:

can't find "<string>"
will be displayed and the cursor will not move. <string> is the search string. If a
repetition count is given, the string will be located that many times before the
command is done. For example, typing the command stream:

3 F hello <Return>
will plaée the cursor after the third occurrence of the string "hello”. If a question
mark (?) is given as the repetition count, the editor will move the cursor to the next
occurrence of the string and prompt with the message:

continue? (y/n)

Typing the letter "Y' will move the cursor to the next occurrence of the search
string. Any other character will stop the Find command.

3.17

The SEE™ Text Editor

‘<rep | 7> -find

The -find command works similarly to the Find command except that the text is
searched backwards from the cursor to the beginning of the file. When the -find
command terminates, the cursor is left on the character prior to the located string.
The question mark repetition count works as in the Find command.

Get - >

The Get command is used to insert the contents of a file into the current file. The
text from the file is inserted at the cursor location. To use the Get command,
“position the cursor at the insertion point and type the letter 'G'. The Get command
will prompt for a filename. Enter the filename and type <Return>. The Get
command will prompt with

reading from <filename> ...

and attempt to read and insert the text from the file. If everything goes well, the
word "completed” will be added to the.prompt. If an error occurs (usually meaning
that the file does not exist), the words "can't read file” will be appended to the
prompt. Finally, if the buffer was filled as a result of the Get command, the words
"buffer filled" will be appended to the prompt indicating that only part of the file
was inserted. '

Insert

The Insert command is used to placé the editor into insert mode. Once in insert
mode, characters other than the command characters will be inserted in the text at
the cursor location. The cursor movement characters always move the cursor
appropriately. The Insert command does not normally do anything with the
repetition count. However, if the '/’ repetition character is specified, then a newline
character is inserted at the cursor location before entering insert mode. If the Ins
key is pressed, the mode will be changed to Exchange mode. To terminate the insert
mode, type the Esc character.

<rep> Jump

The Jump command is used to move to a location previously marked with the Tag
command or for moving to a line when given a line number. When a repetition

3.18

" The SEE™ Text Editor

count is given, the cursor will be moved to the beginning of the corresponding line
(the line number given by the repetition count). Otherwise, the Jump command will
display the menu: :

Jump: A B C D

indicating the four tag names to use. If one of these letters is typed, the cursor will
be moved to the location associated with the tag. This location is set with the Tag
command. If the tag has not been set, the cursor will move to the end of the file.

<rep> List

The List command is used to display all lines containing the given string, The List
command prompts for the search string the same way as the Find command. Once
the search string has been entered, the List command temporarily takes over the
screen and displays all lines, beginning from the cursor location, which contain the
search string. A line will be listed once, even if it contains multiple instances of the
search string. After the screen is filled with lines, the prompt will read:

hit a key to continue

Any key other than control-C will display the next set of lines. If there are no more
lines with matching strings, the screen reverts to its normal display with the cursor
positioned after the last matching string. If no repetition count is given, all
occurences are assumed. Otherwise, the repetition count will control the number of
times the List command will search for the string.

Macro

The Macro command is used to record input from the keyboard and the mouse.
This recording can then be played back to perform the same sequence of operations
beginning at another point in the text. Thus macros give the ability of creating
custom functions built from the standard set of operations. There are eight
definable macro keys, F1 through F8. When one of these function keys is pressed,
the macro associated with the key is replayed. Note that macro keys and the Macro
command cannot be recorded.

3.19

The SEE™ Text Editor
When the M-acro command is invoked, the menu:
Macro: Delete Load Record Save
will appear with the follc;wing meanings:
Delete: used to delete a macro definition. Delete prompts with the menu line:
select function key: Fl‘r F8

When a function key is selected, the macro associated with the key
will be removed. Typing the Esc key will exit the command without
deleting any macro.

Load: used to reload the macros and controls settings from the "see.mac"
file. This file is created by the Save command.

Record: used tostart the macro recording. Record prompts for the macro
number with the menu:

select function key: F1 - F8

When the function key is selected, the old macro associated with that
key, if any, is deleted and a new recording is begun. All input will be
recorded as part of the macro. To terminate the recording, reinvoke
the Macro command by typing the letter 'M'. Now when the
command key is held down and the number is typed, the recording
will be replayed as if the inputs were coming from the keyboard.

Save: used to save the macro definitions and control settings (see the Set
command) into the file named "see.mac" in the current directory.
This file is read, if it exists in the current directory, when the editor is
first invoked and when the Load commiand is used. If the file does not
exist in the current directory, then each directory in the PATH system
parameter is searched.

For example, the following sequence of commands will create macro F1 which can
be used to delete the current line: '

M R <F1> <Home> D <down-arrow> D M

Now when the F1 key is typed, the line that the cursor is on will be deleted.

3.20

The SEETM‘Text Editor

Other

The Other command is used to toggle between the two files available for editing.
The first time the Other command is used, it will prompt for a command line as in
the Quit-Initialize command. Subsequent uses of the Other command will change
the active file from one to the other. If the F10 key had been used to temporarily
expand a split-screen display to use the entire screen, use of the Other command will
reset the display to the split-screen configuration.

Put

The Put command is used to write a block of text out to a separate file. To use the
Put command, move the cursor to the beginning of the block to be written and type -
the letter 'P'. The character under the cursor will be temporarily overwritten with. -
a block character to indicate the beginning of the block. The menu line will be
replaced with the new menu line:

Put: <cursor keys> <esc | P> Again Find -find Jump

Now move the cursor to the end of the block, either with the cursor keys or with the
Again, Find, -find, and Jump commands. These commands may be preceded with a
repetition count. When the cursor is positioned at the end of the block, press Esc or
the letter 'P' to select the end of the block. The Put command will then prompt for a
filename. Enter the filename and type <Return>; the block of text will be written to
the file.

Quit

The Quit command is used to terminate an editing session. When the letter 'Q' is
typed, the Quit command will display the menu:

Quit: BAKup Compiie Exit 1Initialize Save-exit Update Write

and will show the name of the file, an indication if the memory buffer has been
modified, and the size of the file, on the message line. To leave the Quit menu
without executmg any commands, type the Esc character. The menu items have the
following meanings:

BAKup: causes SEE to change the extension of the old file to .BAK and then
write the contents of the memory buffer to the filename given on
the invocation line. If a new file is being edited, no .BAK file is
created.

3.21

Compile:

Exit:

Initialize:

Save-exit:

Update:

Write:

The SEE™ Text Editor

causes the SEE editor to invoke the C88 compiler using the C88
Flags from the SET menu. The message compiling is displayed on
the message line. If an errors occurs, the error message is displayed
on the message line, and SEE resumes editing the file at the error
line.

If no error occurs, SEE will invoke BIND using the BIND Flag
from the SET menu. The message binding is displayed on the
message line. If an error occurs, the-error message is displayed on
the message line. -

The file is not saved prior to the compilation.

causes the SEE editor to exit back to the system. If the memory
copy of the file has been modified, SEE will prompt with the
question:

ignore changes? (y/n)

Typing 'y' will leave the editor and the changes made to the
memory image of the file will be lost. Any other character will
abort the Exit command.

causes the SEE editor to reinitialize the editor and prompt for a new
invocation line (excluding the SEE program name). If the text has
been modified and not saved, SEE will prompt as if Exit had been
selected, giving one last chance to save the changes to the file. The
new file is then read in and the editor is restarted. Note that the
macros and the copy buffer are left intact and can be used with the
new file. -

writes out the file to the disk and exits from the editor without
further prompting.

writes a copy of the memory buffer out to the file given on the
invocation line. This command is useful for quickly saving the
contents of the memory buffer out to the disk to prevent a large loss
of data if a fatal error should occur (either software or hardware).

writes a copy of the text to a specified file, The Write command
will prompt for filename and will then write the text to that file.
This command is usually used when no filename was given on the
invocation line.

3.22

The SEE™ Text Editor

<rep | 7> Replace_

The Replace command is used to locate a specific string of characters and replace it
with another string. Replace uses the same search string specified in the Find, -find,
and List commands. To replace a string, type the letter 'R’ and enter the search
string (or just type Return if the current search string is correct). Then enter the
replacement string and type <Return>. The editor will find the next occurrence of
the search string and replace it with the replacement string. If the search string
cannot be found, the following message will be displayed:

cannot find "<search string>"

The repetition count controls the number of times the replacement will be
performed. To replace all occurrences, move the cursor to the beginning of the file
and use /' for the repetition count. If the question mark (?) is given as the repetition
count, then before the string is replaced, the editor will prompt with:

)

replace? (y/n) or.quit (q)

Typing the letter "Y' will replace the string and the cursor will move to the next
occurrence of the search string. Typing the letter N’ will simply move the cursor
to the next occurrence of the search string. And typing the letter 'Q' will abort the
Replace command.

Set

The Set command is used to change several controls in SEE; tab width, indentation,
case sensitivity on search strings and a special auto-insert mode. The values of the
controls may be saved with the Macro Save command so that the settings will be the
same each time the editor is invoked. The Set command will display one of two
menus: _

Set :Auto-ins (off) Case(no) Flags Height (0) Indent (yes) PC -space-

Set :Right (80) Spill(D) Tabs(8) Word-wrap(off) '{'~indent(2) -space-

The current settings of the controls are displayed in parentheses. To change a
control, pick its menu item and follow the prompts. The controls are defined as

follows:

3.23

Auto-ins:

Case:

Flags:

The SEE™ Text Editor

This control forces the editor into insert mode after each command.
To execute a single command, type the Esc key to temporarily
terminate the insert mode and bring up the command menu. Select
a command as usual. After the command executes, SEE will
automatically place itself back in Insert mode. Selecting this menu
item will display one of the following two messages, depending on
the state of the control:

if the Auto-insert control is off (default)
Set auto-insert mode? ky/n)
otherwise
Reset auto-insert mode? (y/n)

Typing "Y' will change the control from one stafe to the other.
Anything else will leave it alone.

This control is used while searching for strings in the Find, -find,
List, and Replace commands. When the control is on, the case of the
search string and the text is ignored during the string comparison,
so the string "AbC" is equal to the string "aBc". When this control
is off, the case of the characters in the string must match exactly.
Depending on the state of the case-ignore flag, one of the following
messages will be displayed when this menu item is selected: .
if the case-ignore control is-on (default)

Make case significant on searches? (y/n)
otherwise

Ignore case of searches? (y/n)

Typing "Y' will change the state of the control.

This control specifies-the command line for invoking the compiler
(C88) and the linker (BIND). The choices for this menu are:

Set Flags: Bind C88

3.24

Height:

Indent:

"The SEE™ Text Editor

The Bind option displays the line that will be use to invoke BIND.
The default is:

BIND %0

BIND is the name of the linker. %0 contains the name of the file
being edited. Edit the flag to add any BIND options you wish.

If you are compiling several modules, set the Bind Flag to a NULL
string (use "RETURN), so that BIND is not called for each module.
Then, use the F9 key to invoke DOS and BIND the files manually.

The C88 Flag displays the line that will be use to invoke C88. The
default is:

c88 %0

C88 is the name of the compiler. %0 contains the name of the file
being edited. Edit the flag to add any C88 options you wish.

This control controls how two files are displayed on the screen.
The submenu is:

enter second screen height (0, 8..17)

If O is entered, the second file is shown alone on its own screen.
Using the Other command flips the display between the two
displays. This is the default height.

If a number between 8 and 17 is entered, both files are displayed
together. A dashed line separates the two areas. The height of the
second area is the number of lines entered.

This control indicates whether the blanks and tabs from the
previous line are copied to the beginning of the the new line when a
Return is inserted. When this control is on, the indentation is
copied. This provides an aligned left margin to the indented text.
When this control is off, no indentation is copied when a Return is-
entered and the cursor moves to the left edge of the screen.
Depending on the state of the Indent control, selecting the Indent”
menu item will result in one of the following messages:

3.25

PC:

The SEE™ Text Editor

if the Indent control is on (default)

Reset auto-indent mode? (y/n)

otherwise

Set auto-insert mode? (y/n)

Typing "Y' will change the state of the control.

This menu item selects the IBM-PC specific information. These
settings may be valid for other direct clones but it is not guaranteed.
The following menu will be displayed:

Set PC:Add-"Z Cursor-height Foreground~color Background-color

Add-~zZ:

Cursor-height:

Controls whether a DOS 1.0 EOF character
(CTRL-Z, 0x1A) is appended to the end of the
file. Selecting this menu will display one of the
following two messages, depending upon the
state of the control:

If the Z control is off (default)
add control-Z at the end of files? (y/n)

otherwise

stop adding control-Z? (y/n)

“Typing "Y' will chax{ée the state of the control.

Sets the height, in pixels, of the character cell
size. By enabling this control, the cursor will
change shapes according to the mode that the
editor is in; a double bar for command mode, a
single bar for insert mode and a block for
exchange mode. Enter

0 disable this feature,
8 color graphics adapter,
12 - monochrome adapter.

3.26

The SEE™ TeXt Editor

Foreground-color: Sets the foreground color attribute. The colors
are defined by the IBM-PC as follows:

VONRUNAWN—O

black,
blue,
green,
cyan,

red,
magenta, ,
brown,

light grey,

dark grey,
light blue,
light green,
light cyan,
light red,

light magenta,
yellow,

white.

Background-color: Sets the backgfound color attribute. The .
* background colors for the IBM-PC are defined
as follows:

0

N R W N e

black,
blue,
green,
cyan,

red,
magenta,
brown,
light grey.

Values above 7 cause the characters to blink.

Right: This control sets the character column for the Wrap command and
the automatic word-wrap mode. Words which extend beyond this
column are moved to the next line. The following message is

displayed:

enter wrap right column:

3.27

The SEE™ Text Editor

Enter a number between 0 and 255. An invalid specification is
signaled with

bad wrap width (0 < x < 256)

Spill: This control determines the drive on which the editor's spill files
will be created. A '@’ indicates the current default drive. The
following message will be displayed:

enter spill device letter: (A-Z, 0 for default)

Type a single letter to signify which drive to use or the '0’ character
to indicate the use of the current default drive.

If spill files have already been opened, they will be moved to the
new drive (the contents of the copy buffer will also be deleted).
This is useful if the original spill disk becomes full and another disk
is available. : .

Tabs: This control determines the expansion factor of tab characters in the
text. The following message will be displayed:

select tab size (1..19)

By default, this value is 4. However, if the file on the invocation
line has an extension which starts with the letter 'A’ (as in xxx.a),
then the tab size will be set to eight; a useful size when writing in
assembly language. If the extension starts with the letter 'C’, then
the tab size is set to four. Otherwise the tab size remains at its
current setting. The tab size may be a value from one to nineteen
indicating that the tab stop locations will be separated by one to
nineteen character locations, respectively.

Word-wrap: When this control is on, the editor will automatically move words to
the next line if the current column is greater than the right column
Selecting this menu will display one of the following two messages,
depending upon the state of the control:

If the ~Z control is off (default)

set word-wrap mode? (y/n)

3.28

'{"-indent:

The SEE™ Text Editor

otherwise

reset word-wrap mode? (y/n)

Typin;g "Y' will change the state of the control.

This is a special indentation mode for assisting in C programming.
The following mesaage will be displayed:

enter indent mode (0, 1, 2) -~
An error is signaled by
bad indent mode

When this control is on and the Indent control is on, the editor will
automatically add an extra tab character to the indentation when a
<Return> is inserted just after the left brace ({) character. There
are two possibilities for <Return>s which follow the right brace (})
character. If mode 1 is selected and a tab character preceded the
right brace character, it will be removed and the indent level
reduced accordingly. This corresponds to the following type of
indentation:

main () .

{
int i;
for (i = 1; i < 10; i++)
{

}

printf(*hello, world\n"™);

If mode 2 is selected, then the indentation of the new line is-
decreased by a tab if the Return was inserted just after the right-
brace (}) character. This corresponds to the following type of
indentation:

main () {
int i;
for (1 = 1; 1i < 10; i++) {
printf(*hello, world\n");
}

3.29

The SEE™ Text Editor-

Tag

The Tag command is used to set markers in the text file. Once a tag is set, the
marked character can be located with the Jump command regardless of the
insertions and deletions around the marked character (unless the marked character
is deleted). The Tag command displays the menu:

Tag: A B C D

where A, B, C, and D correspond to the four tags available. To use the Tag
command, move the cursor to the character to be marked and type 'T". Now select
one of the tag names by typing the corresponding letter.

V.ersion/View

When the cursor is at the begining of the file, this command displays the SEE
version number on the second line of the display. With the cursor at any other
location in the file, it redisplays the current screen with the line containing the
cursor at the third line of the display.

Wrap

The Wrap command is used to reformat a paragraph. All of the lines, starting with
the line that the cursor is currently on to the next blank line, are reformatted to
make sure no word extends beyond the right margin (set by the Right-col control).
Indentation for the lines is determined by the indentation of the first line of the
paragraph. The Wrap command requires a confirmation to avoid wrapping code by
mistake. The letter "'W' may also be used to confirm the Wrap operation.

Xchange

This mode is similar to Insert mode except that characters in the text are
overwritten by the new characters. The only characters not overwritten are
Returns. An attempt to overwrite a Return simply inserts the character prior to the
Return. If the Ins key is pressed while in Exchange mode, the mode will be changed
to Insert mode. :

3.30

The SEE™ Text Editor

Finally, there are a few single character commands which are not listed on the menu
line but may be of use:

#

The number sign (#) command displays the current line number on the message
line, ' .

I3

{30101

When the cursor is on a left brace '{’, left parenthesis '(' or left bracket '[' and one
of these command characters is typed, the cursor will be moved forward to the
corresponding right brace '}, right parenthesis ')', or right bracket ']'. If the

cursor is on a right chdracter '},),]', it will move backward to the corresponding left
character '{,(,['. Note that this command-does not know about comments so
unmatched characters will confuse the search routine.

<Iep>\

The backslash command is used to insert literal characters into the text by entering
their decimal equivalents. When backslash is typed, the editor will prompt for a
decimal value. Numbers from 0 to 255 are valid but 254 and 255 have special
meaning to SEE. The repetition count determines the number of times the
command will prompt for input.

Configuration

~ Distributed with the package, are a number of files used to reconfigure the editor to
run on other DOS based machines with different keyboards and/or screens:

SEE.O: relocatable object file

PCIO.A: " source code for an IBM-PC BIOS based interface. ‘

CONFIG.C: source code for terminal based screen interfaces. Contains
interfaces for ANSI terminals, a Hazeltine 1500, Dec VT-52

and the Zenith Z100.

3.31

The SEE™ Text Editor

The PCIO.A and CONFIG.C files should contain enough information in the
comments to build your own mterface if necessary.

To build the editor, compile/assemble one of the interface files, or one of your own
making, and link it with the editor with the following bind command:

bind see config

This will generate a new SEE.EXE file with your mterfaces linked in instead of the
standard IBM-PC interfaces.

3.32

Chapter 4
The C88 C Compiler

Introduction ' 4.1
Invocation 4.1
Examples : 43
The C Language
Environment
Character Set ' 44
Trigraph Sequences 4.4
Language
Keywords : 4.5
Identifiers 4.5
Floating constants T 4.5
Integer constants : 4.6
. Character constants 4.6
String constants 4.6
Hardware data types 4.7
Enumerated type 4.8
Function prototyping 4.8
Preprocessor '
Conditional compilation 4.9
Source file inclusion 4.10
Macro replacement 4.11
Line control 4,11
Error 4.11
Pragma 4.11
Null ' 4.12
Predefined macros 4,12
Extensions |
Asm 4.12
Case range : 4.13
Restrictions
Forward references 4.14
Externs ‘ 4.14

Large Case Option 4.15

Introduction

The DC88 C Compiler

(88 is the C compiler for the 8088/8086 family of microprocessors. It accepts C
source programs as input and produces object files. The compiler supports both the
Small memory model which efficiently utilizes the 8088/8086 architecture but
limits a program to 64KB code and 64KB of data, and the Large Memory Model
which is limited only by the amount of available memory.

Invocation

C88 <filename> [options]

<filename> is the name of the file containing the C source. If it does not include '

Options:

an extension, the extension '.C' is assumed.

You may use a hyphen, *-', to enter the source from the predefined
file stdin. The file must be a disk file, compiling from the
keyboard is not supported. You can redirect the input

c88 - <filename
Or you can use a pipe
yourpgm | c¢88 -

The case of the option is :not significant. Each option should be
separated from other options by blanks. Options may be preceded
with the dash (-) character.

A - assembly output. This option indicates that the compiler should
produce an assembly language source file instead of an object
file. The name of the assembly language file will be the same as
the name of the source file but will have the extension "A'.

B - big. This option instructs the compiler to produce Large Case
Memory Model output. You need the Large Case Option (not
included with the DeSmet C Development Package) to use this
option.

C - produce check information. This option causes the compiler to
generate information for BIND to create the .CHK file used by

the debugger and profiler.
4.1

The DC88 C Compiler

D<name> - compiler drive specification. The compiler assumes
that the files GEN.EXE and ASM88.EXE are in the default
directory on the current drive. This option is used to inform the
compiler that the files are on a different drive. ‘For example, if

_the compiler is on drive ‘M, then the option 'DM' is needed.

Under MS-DOS 2.0 and later versions of fh_c operating system,
this option is rarely needed as the system PATH variable is also
used to find the other passes of the compiler.

E - run the preprocessor and output fhe result to the predefined file
stdout. All macros and include files are resolved.

I<name> - include path name. This option overrides the default
drive/directory for files included with the #include control. The
directory name must end with a trailing backslash (\) character
(e.g. —ic:\src\include\). See the Preprocessor section for

#include details. -

M This option is used to produce Intel object files rather than the
standard .O object file format. To work properly, the file
TOOBJ.EXE must be in a directory in the PATH.

N<defname>=<defvalue> - specify #define name and value.
Used to set debugging switches or constant values without
editing the file. This option is equivalent to

#define defname defvalue :
at the beginning of the program. To set <defname> to 1, enter
‘n<defname>, which is equivalent to
#define defname 1
Spaces are not allowed.

O<filename> - output filename. The compiler will produce an

object file with the specified name. If the name lacks an

extension, the extension '.O' will be added. The default object
name is the same as the source name with the extension of ".O".

4.2

The DC88 C Compiler

P<switch> - sets the indicated pragma swit¢h on. The switches
are: ’

T - requests that ANSI trigraph sequences be processsed.

W - requests the display of all warning messages. Structure ‘
assignment, structure arguments, and prototype conversion
warning messages are not normally displayed.

X -requests that the extended keywords be recognized. Use this
switch when you use the #asm featiire to embed assembler
into your C program.

T<drive> This option specifies the drive that the compiler should
use for its temporary files. If not specified, the compiler will
build its temporary files on the default drive. If this drive is
close to being full, the "T" option should be used to change the
drive for the compiler work files. Also, if the RAM Disk has
been installed, placing the temporary files there will drastically
cut the time needed to compile a program.

Examples
C88 blip

compiles the file named blip.c. The object file will be named blip.oi.k
Cc88 blip b

compiles the file named blip.c using the Large Case Option. The object file
will be named blip.o. You must use BBIND to link this program.

m:C88 b:blip.ccc tm dm

runs the compiler from drive M on the file b:blip.ccc. Temporary files are
also written on drive M. Note the use of the D option to indicate the location of
the other passes of the compiler. The object file will also be named blip.o.

c88 blip pwx

compiles blip.c in the current directory. Structure assignment, structure
argument, and prototype coersion warnings are reported. The extended
keywords are recognized.

43

The DC88 C Compiler

The C Language

DC88 compiles C programs that conform to the definition of the C language as
described in the Draft Proposed -American National Standard for Information
Systems — Programming Language C.

ENVIRONMENT
Character Set
DC88 recognizes the following characters:

letters - the 52 upper-case and lower-case letters of the English alphabet
: and the underscore [a-z,A-%, _ |

digits the ten decimal digits [0-9]

white-space the space, horizontal tab, vertical tab, form feed, carriage
return, and line feed characters. Comments, sequences of
characters begun with a /* sequence and ending with a */
sequence, are equivalent to a space character. Comments do not

‘nest.

others the following 28 graphics charcters
P s s () R, -
s s <=>2 [0\~ {1}~

In addition, any of the 255 characters in a byte (excluding 0) are valid in a string
constant. - _—

Trigraph sequences
When trigraph processing is enabled (through the -pt command line switch or the

#¢pragma trigraph option), the following sequences of three characters are
replaced with the corresponding single character.:

22= — # 22(= [22/ = \
?2) =] 220 = A 22< = {
220 > . 22> =) 27 =~

4.4

The DC88 C Compiler
LANGUAGE

Keywords

The following tokens are reserved as keywordé of the language. A * indicates an
extended keyword (enabled through the -px command line switch or the #pragma
extended option).

*asm double if . sizeof
auto else “int v static
break enum . * interrupt struct
case extern long switch

* cdecl * far * near typedef
char float * pascal union
const for register unsigned
continue * fortran return void
default goto short volatile
do * huge ' signed "while

Identifiers

An identifier is a sequence of letters (which include the underscore) and digits. The
first character must be a letter or an underscore. Only the first 31 characters are
significant. Corresponding lower-case and upper-case letters are different.

Floating constants

A floating constant has a value part, followed by an optional exponent part,
followed by an optional suffix that specifies its type. The value part consists of an
optional digit sequence representing the whole-number part, followed by a period
(), followed by a digit sequence representing the fraction part. The exponent part
consists of either an e or an E, followed by an optionally signed digit sequence.
Either the whole-number part or the fraction part must be present; either the period
or the exponent part must be present.

The digit sequences are interpreted as decimal integers. The exponent indicates the
power of 10 by which the value part is to be scaled.

An unsuffixed floating constant has type double. If suffixed by the letter £ or F,it
has type £loat. If suffixed by the letter 1 or L, it has type double.

4.5

The DC88 C Compiler
Integer constants

An integer constant begins with a digit, but has no period or exponent part. It may
have a prefix that specifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal
digits. An octal constant consists of the prefix 0 optionally followed by a sequence
of the digits 0 through 7 only. A hexadecimal constant consists of the prefix 0x or
0x followed by a sequence of decimal digits and the letters a (or A) through £ (or F)
with values 10 through 15 respectively.

An unsuffixed integer constant has type int or long depending on its size. If
suffixed by the letter u or U, ithas type unsigned. If suffixed by the letter 1 or L,

it has type long.

Character constants

A character constant is a sequence of one or more characters enclosed in single-
quotes, as in 'x' or 'ab'. The characters can be any of the 255 byte values,
excluding 0. The single-quote ', the double-quote ", the question-mark ?, the =
backslash \, and arbitrary integer values, are representable according to the

following table of escape sequences.

\' 0x2C single-quote’ \" 0x22 double-quote "

\? 0x3F question-mark ? \\ 0x5C backslash\ :
\ooo 1 to 3 digit octal value \xhhh 1 to 3 digit hexadecimal value
\a . 0x07 alarm \b 0x08. backspace

\f = 0x0c formfeed \n OxOA linefeed .

\r: 0xO0D carriage return \t- 0x09-horizontal tab

\v 0x0B vertical tab

String Constants

A string constant is a sequence of zero or more characters enclosed in double-
quotes, as in "xyz". Each character in the sequence is treated as if it were in a
character constant, except that the single-quote ' can be represented either by itself
or the escape sequence \ *. The double-quote " must be represented by the escape
sequence \". o :

4.6

The DC88 C Compiler

The maximum size for a source file string constant is 255 bytes. Larger object file
string constants can be constructed by concatenating source file string constants, as
in:
char xyz[] = "aaaaaaaaaaaa"
"bbbbbbbbbbbb"
"cccececcecccee";

which is equivalent to

char xyz[] =" aaaaaaaaaaaabbbbbbbbbbbbcccccccccccc" ;
- Hardware data types
DC88 Type 8088 Type Description
char BYTE Unsigned byte with a range of 0 to 255.
int WORD Signed integer with a range of -32768 to 32767.
short
unsigned WORD Unsigned integer with a range of 0 to 65535.
long DWORD Slgned integer with a range of -2147483648 to
2147483647.
float DWORD Four byte IEEE ﬂoatmg point value. A float has

about 7 digits of precision and has a range of about
1.E-36 tol.E+36.

double QWORD Eight byte IEEE floating point value. A double
has about 13 digits of precision and a range of about
1.E-303 to 1.E+303.

(pointer) WORD In the Small Case Memory Model, pointers are two
bytes, limiting total data space to 64KB.
DWORD In the Large Case Memory Model, pointers are four
bytes.

To take advantage of the 8088/8086 instruction set, expressions involving only char
types are not coerced to int before evaluation. The sum of a char equal to 255 and a
char equal to 1 is O rather than 256. Constants are considered to be int values so that
constant plus char is a two byte integer operation.

4.7

The DC88 C Compiler
E_numerate_d type

Enumerated type provides a convenient method of declaring an ordered set of
named constants. Values start with zero, and may be reassigned with a name =
valueexpression. The same value may be assigned to several names. For example

enum color {red, blue=4, green} ca, *cp;
enum color cb; ’
if(ca == red)

cb = *cp = green; ‘ y

is equivalent to '

#define red 0
#define blue 4
#define green 5
int ca, *cp;
int cb; '

if(ca == red)
cb = *cp = green;
Function prototyping v
Both the type of value returned by a fur'xcti‘c;n',‘aﬁd the type(s) of the arguments to the
function may be specified. To specify the type of each argument to a function, place

the types of the argument, separated by commas, between the parentheses in the
function declaration. For example to indicate that a function takes a double:

double sqgrt (double);
If you call sqrt (1), the integer 1 will be converted to a double. If you want to
know when these conversions are made, use the -pw command line option, or
specify #pragma warning in your program.
To indicate that a function takes no arguments, specify:

void abort (void);

To indicate that an unknown number of arguments, of unknown type, are valid,
specify:

int printf(char *, ...);

4.8

The DC88 C Compiler

int xxx(); isequivalentto int xxx(...);
You can also define functions using the prototypical style, as in
int main(int argc, char *argv[]) {

Only prototypically declared functions are checked for possible argument
conversions.

PREPROCESSOR
Before any interpretation of source file text is started, all occurrences of a

backslash-newline sequences are deleted. Thus you can break text anywhere for
cosmetic purposes without changing its meaning, as in

#defi\
ne FO\
O 10\
24

which is equivalent to #define FOO 1024
A preprocessing directive consists of a sequence of preprocessing tokens begun by a
character that is the first character of a line (following optional whitespace
characters), and ended by a linefeed character.
Conditional compilation
#if expr, #elif expr, #ifdef id, #ifndef id, #else, #endif
#if and #elif evaluate expr. expr must be a constant expression, but may not
contain a sizeof operator, a cast, or an enumeration constant. expr may contain a
unary expression of the form

defined identifier
or

defined (identifier)

which evauates to 1 if identifier is currently defined as a macro name, 0 otherwise.
All constants are evaluated as long. '

4.9

The DC88 C Compiler

#ifdef and #ifndef are equivalentto #if defined id and #if !defined
id, respectively. : ,

If the test evaluates to 0, the source code up to the next #elif, #else, or #endif
is skipped. If the next directive is #e11f, its expr is evaluated. Ifitis #else, the
following source code, up to the terminating #endif, is passed to the compiler, If
it is #endi £, the conditional compilation is complete.

- If the test evaluates to non-zero, the source code up to the next #elif, #else, or
#endif is passed to the compiler. Then the remaining source code, up to the
terminating #endi¥f, is skipped. :

Conditional compilation groups can be nested.
Source file inclusion
#include name

Includes other files into the program. #include's can be nested to a maximum depth
of 20.

#include "filename" will search the default directory for the file filename .

#include <filename> will first search the default directory for filename . If
the file was not found, the environment (see the DOS SET command) is searched for

‘the key DSINC. If DSINC is not found, the environment is searched for the key
INCLUDE . If INCLUDE is not found, a "cannot open include file" error is
generated. The DSINC key is used in case you have other applications that also use
the key INCLUDE. ’

If the key is found, it should contain a set of directory prefixes separated by

semi-colons and terminated with a backslash (\). For example, if DSINC is set as
follows - :
C>set DSINC=c:\;c:\usr\include\

then the line #include <world.h> would cause C88 to search for

world.h
c:\world.h
c:\usr\include\world.h

#include name behaves like the previous two examples, where name is a macro
that expands into one of the two forms.

-4.10

The DC88 C Compiler

Macro replacement

#define name replacement defines an object-like macro that causes each
subsequent instance of name to be replaced with replacement .

#define name (parameters) replacement defines a function-like macro
that causes each subsequent instance of name followed by a (to be treated as an
invocation of the macro. When defining the macro, the (must immediately follow
name. When using the macro, the (' may be separated from name by whitespace.
Each argument specified in the macro call is expanded and used to fill in the
parameter placeholder specified in replacement .

If a parameter placeholder in replacement is immediately preceeded by a #, then
both are replaced by a string constant that contains the unexpanded spelling of the
parameter. Leading and trailing white space of parameter is deleted. The

- backslash \ and double-quote " characters are escaped with a backslash character.

If a parameter placeholder is immediately preceeded or followed by a ##, then the
operator is deleted and the preceeding and following tokens are concatenated.
The unexpanded form of the parameter placeholder is used. The ## operator can't
be first or last in replacement .

Line control
#line digits resets the line number of the next source line to digits .

#line digits string resets the line number of the next source line to digits ,
and the name of the source file to string . string must be a string constant.

#line name behaves as the preceedmg two forms, where name expands to one of
the two forms.

Error
#error text produces fext asa diagnostic message.
Pragma

Pragma directives consist of a name and an action. The bold portion of the name in
the following specxﬁcatlons shows the minimum amount of the name that must be
specified. The action can be + to turn the switch ON, - to turn the switch OFF, ! to
invert the switch, and = to reset to the default state. No action turns the switch ON.

4.11

The DC88 C Compiler
#pragma trigraphs controls trigraph processing. Default is OFF.
#pragma t+

#pragma warning controls whether structure assignment, -structure argument
and prototype argument type conversions are reported. Default is OFF.

#pragma warn -

#pragma extended controls whether the' extended keywords, 1nclud1ng #asm,
are recognized. Default is OFF. : .

#pragma extended =
Null
A # on a line by itself is ignored.

Predefined macros

All predefined macros begin with two underscore characters ' ', except for the
LARGE_CASE macro (which is retained for compatiblity with prev1ous releases).

__LINE__ is the number of the current source iine (can be reset with #1ine).
_;FILE__. is the name of the source file (can be reset with #1ine).
__DATE___ is the current date in ti;e form "Mmm dd yyyy" |

_T IME__ isthe eurrent time in the form "hh:mm:ss" - |

__STDC__ "1" = Standard-conforming implementation, "0" otherwise
___DESMET __ identifies this compiler

LARGE_CASE
__LARGE___ indicates the Large-Case option, b, was selected.

__SMALL__ indicates the Large-Case option, b, was not selected.

4.12

The DC88 C Compiler

EXTENSIONS

Asm

A #asm directive has been included to allow in-line assembly language code for time
critical applications. All lines following a line starting with #asm are passed
through to the assembler. A line consisting of the "#' character ends the in-line
assembly code. Object-like macros (without arguments) as well as arguments and
variables local to the function can be referenced by prepending a # to the name.
Global variables are accessed by name with an' ' appended. Be sure to specify
operand size (BYTE, WORD, ...). Extended keywords miust be enabled (px).

#pragma ex+
#define COM1 0x3B4
int x;

_zip(int count,

int vy

#asm
MOV CX, #count ;count
MOV SI, #src ;src
MOV DI, #tar ;dst

mov WORD #y, #COM1
mov WORD x_, #COML1

}

Case range

As an alternative to coding

case ‘'a': case 'b': case 'c':
you can specify
case 'a' .. 'e':

Extended keywords (px) must be on.

4.13

char *src,

char *tar) {

case 'd': case 'e':

The DC88 C Compiler
RESTRICTIONS

Forward references

- C88 iseffectively a one pass compiler so forward references will not work. The
following program:

main{) {
i=99; o S .
extern int i; C
will produce a warning that ‘i’ is undefined and is assumed to be a local variable
named 'I'. The global variable 'i' will not be changed. '

Structure tags must be defined before being referenced. The only exception is
pointers, so that legal structure declarations include structures of the form:

struct a {
struct b *x;

}

struct b {
struct a *y;

}

Externs

A declaration that includes the keyword ‘extern' may not iniclude initializers and
does not allocate any memory. Thus a variable so declared must be declared
somewhere else without the 'extern’ keyword in order to reserve memory for the
variable. For example, if a file contains the declaration extern int blip, then
some other file must contain the declaration int blip to actually allocate storage.
If this is not done, the binder will complain about a reference to the unresolved
symbol blip . It is permissible to have both an ‘extern’ and non-'extern’ declaration
in a single file. For example, .

extern int blip;
int blip;

is valid.

4.14

The DC88 C Compiler

To create include files containing data declarations include the declaration:
extern int blip:; |
add the declaration:
int blip;

to one of the files to actually allocate the storage If the vanable needs mmahzatmn
initialize the value in the one file:

int blip = 1985;

Large Case 'Option

With most programs, just compile with the -b switch on, and link using BBIND.
Remember that all the object files must have been compiled or assembled with the
-b switch.

Most of the difficulty in converting to Large Case is in the area of pointers. In
Small Case, pointers and int's are the same size — if you don't declare a function
to return a pointer there is no harm done. The default int return of the function is
the same size as a pointer.

In Large Case, however, pointers are four bytes and ints are two bytes long. You
will get an error message if you try to assign an int or an unsigned to a pointer,
Or Vice versa.

The macro names __ LARGE__and LARGE_CASE will be true (defined) when the
-b option has been | specified on the command line. You can test for this condition
using #ifdef or #ifndef

#if defined __ LARGE _
#define stdin OL
#define stdout 1L
#define stderr 2L

#else
#define stdin O

#endif

4.15

, The DC88 C Compiler
The things to watch out for are:
« functions retufnin}; pointers must be declared before use.
. fopen () now returns a pointer, and must be declared before being called.
FILE *fopen(); /* Assumes STDIOH included ¥/

The pointer is used by £close (), fgetc(), fgéts 0,
fprintf (), fputc(), fputs(), fread(), fscanf(),
fseek () ’ fwrite () 4 getC () r getW(). 4 PutC () ’ ,PUtWV() 14

ungetc () ;

open () still returns, and the other 1/O functions still use, an int. Note
that this means that fclose () and close () are not interchangeable.

This should make these functions more portable to other C environments.
. Largc Case and Small Case object files cannot be linked together.
« A long can be assigned to a pointer, and vice versa.

¢ malloc() is slow as it calls DOS. This was done to leave as much space as
possible free for calls to exec () .

The C88 Compiler supports both small and large case compilatiOnS. To compile a
large case program, use the b switch, as

c88.blip -b
The hyphen is optional.

There are a few new Large Case Option error messages:

illegal indirection something other than a pointer has been used as a
pointer. .

illegal index a pointer cannot be used as an array index

illegal assignment only a pointer, long, or constant can be assigned to a

pointer. Note: this is a pass 2 error — the -¢ (checkout
option) must be used to get the line number of the
error.

4.16

Chapter 5

The ASM88 Assembler
Introduction ' 5.1
Invocation 5.1
Examples 52

Large Case ASM338 ‘ ' 53

[

In&oducﬁoﬁ

The ASM88 Assembler

ASMS8S is the 8088/8086 assembler. It reads assembly language source files and

Invocation

lA,SM88 <filename> [options]

. produces linkable object files. The assembly language is described in appendix B:

¢

<filename> is the name of the. assembly language source file. If it does not include
' an extension — the extension '.A’ is assumed.

Options: The case of the option is not significant. Each option should be
separated from other options by blanks. Options may be preceded with
the dash (-) character. :

B

The assembler creates Large Case (big) memory model object
files. You need the Large Case Option (not included with the
DeSmet C Development Package) to use this option.

L[<filename>] — The assembler will produce a listing from the

assembly language input. This listing includes the hex-values
generated by the assembler as well as line numbers and
pagination. If no name is specified, then the name of the
source file with the extension L' is used. If the specified file
does not have an extension, '.L' will be used. Otherwise the
listing is written to the specified file. To generate a'listing on
the printer, use -LPRN:'.

The assembler will produce an object file with the Intel
formats rather than the standard .O format. The file
TOOBJ.EXE from the DOS LINK package must be in the
same directory as the GEN.EXE and ASM88.EXE files. You
need the DOS LINK Option (not included with the DeSmet C
Development Package) to use this option.

O<filename> — The assembler will produce an object file with the

specified name. If the name lacks an extension, then the
extension '.O" will be appended to the name. The default
object file name is the name of the source file with the
extension changed to .O".

5.1

The ASM88 Assembler

T<drive> — The 'T" option specifies the drive where the assembler
temporary files will be created. If a RAM Disk is available,
redirecting temporary files to that drive will greatly speed
development. The assembler normally creates its temporary
files on the default drive/directory.

Pnn Specifies page length, in lines. The default is 66.

Wnn Specifies page width, in characters, for the list file. The value
nn must be a number from 60 to 132. The default is 80.

Examples
asm88 blip

- assembles the file named blip.a and produces a Small Case memory model
object file named blip.o.

asm88 blip b

. assembles the file named blip.a and produces a Large Case memory model
object file named blip.o. :

M:asm88 blip.asm -Ob:blip Lblip.lst
runs the assembler from drive M: on the file named blip.asm. The output is an
object file named blip.o on drive B: and a listing file named blip.lst on the
default drive. .

asm88 blip.a TM -oa:blip.o -lb:blip.lst
assembles the file named blip.a. Temporary files are created on drive M:. The

output of the assembler is placed on drive A: in the file blip.o, A listing file is
generated and written to drive B: in the file blip.Ist ,

52

The ASM88 Assembler
Large Case ASM88

ASM88 also supports large and small case assembly. To assemble a large case
program, use the b switch as

asm88 blip -b
The hyphen is optional:’

In addition to the standard CSEG (Code Segment) and DSEG (Data Segment) °
directives, there is a ESEG (Extra Segment) directive. CSEG and ESEG can be any
size, while DSEG is restricted to 64K. CSEG is addressed with CS, DSEG with DS,
and ESEG with either DS or ES. The Stack is a separate segment whose default size
is 8K (changeable using the -s option of BBIND). The Stack is addressed by SS.

The long call and return, LCALL and LRET, are normally used instead of CALL"
and RET. You can mix the short and long forms of call/return in a program, but be
sure that each form of return is matched to the corresponding form of call.
The DD directive creates a long (4 byte) pointer

label DD zip, zap
See Chapter 10 for the Large Case memory model layout.
All Assembly Language functions must preserve BP and DS.
There are two new prefix operators — SEG and @. SEG is similar to OFFSET
except that it generates the segment of the variable rather than the offset. @ is
special — a long (4 byte) pointer is created (if needed).in DSEG and its offset is

generated. @ is normally used with LES to load a long (4 byte) pointer to a variable.
For example:

ESEG

msg DB ‘Hello World!!',10,0
DSEG

msgptr DD msg
CSEG

PUBLIC main_,puts_
main_: push BP
mov BP, SP

53

The ASMS88 Assembler

les SI,msgptr ;. long ptr
push ES

push SI

lcall puts_

mov SP,BP

mov AX, seg msg ; get segment
mov ES,AX

mov SI,offset msg 7 get offset
push ES ’

push ST

lcall puts_

mov SP,BP

les SI,@msg ; seg:offset
push ES

push SI1

lcall puts_

mov SP,BP

.push @msg+2 ; seg

offset

-

push @msg
lcall puts_

mov ' SP,BP
pop BP
lret

To facilitate writing assembler modules that can wor'k.\.avith both Large and Small
Case programs, the builtin symbol LARGE_CASE is recognized by ASMS88. It has
the value 1 if the -b flag is set, otherwise it s zero.

The control directives IF, ELSE, and ENDIF have been added to support conditional
assembly. Any symbolic name — set by an EQU directive — can be used. For
example:

CSEG

PUBLIC strlen_

strlen_: push BP
Xor AX,AX
mov BP, SP

54

The ASMB88 Assembler

IF LARGE_CASE
' les BX, [(BP+6] ; point to string
SL_LOOP: cmp BYTE ES:[BX],0 ; test for EOS
ELSE
mov BX, [BP+4] ; point to string
SL_LOOP: cmp BYTE [BX],0 ; test for EOS
ENDIF
jz SL_RET]
inc AX ; length
inc BX

jmp SL_LOQOP
SL_RET: pop BP

IF LARGE_CASE
lret

ELSE
ret
ENDIF
END .
When combining Large Case C88 and ASM88, keep the following in mind:
* Long calls (LCALL) and returns (LRET) are used.
 With the standard PUSH BP/MOV BP,SP prolog, parameters start at [BP+6]

= Pointers are returned in ES:SI

» Static and fundamental data are placed in DSEG, structures and arrays in
ESEG :

55

| Chapter 6
The BIND Object File Linker

Introduction 6.1
Invocation , 6.1
Examples ' 6.3
Small Case BIND
Space Considerations 6.3
Overlays 6.4
Large Case BIND ' ' 6.6

Libraries 6.7

Introduction

» The BIND Object File Linker

BIND is the program that links together object and library modules and forms an
executable program. For very long command lines, see the -f option. _

Invocation

BIND <filename> <filename> ... [options] -

<filename> A sequence of filenames separated by blanks. The filenames

Options:

should be the names of object (.O) or library (.S) files. Ifa
filename does not have an extension, .O' is assumed. BIND
automatically looks for the supplied library CSTDIO.S so its
name should not be included in the list of filenames.

All options may be in upper or lower case. Options must be
separated by blanks and preceded by a hyphen to differentiate
them from <filename>s. Note that this is different from other
commands where the hyphen is optional.

-A The assembler option keeps BIND from generating the C
initialization code. Instead, execution begins at the
beginning of the code rather than starting at the main_ public
label. ARGC and ARGV are not calculated and the stack is
not set up. Uninitialized variables are not filled with zero.
Library functions such as creat() and open() cannot be used
as they depend on the zero initialization. The 'A’ and 'S’
options are useful for a few cases but caution should be
exercised in their use.

-C This option indicates that BIND should also generate a
checkout (.CHK) file. This file is required when using the
D88 debugger and the profiler. . '

-F<filename> identifies a file containing <filename>s and
options to be used by BIND. This is used for very long lists
of filenames and options. :

-L<name> specifies the drive/directory containing the
CSTDIO.S standard library. If this option is not specified,
the CSTDIO.S file must be on the default drive. With
MS-DOS 2.0 and later versions of the operating system, the
PATH system parameter is used to.locate the library.

6.1

The BIND Object File Linker

-Mn Indicates that the object files following this control should be
collected in the memory-based overlay indicated by the
value n (1to 39). See the description on overlays below for
details on the overlay mechanism.

-O<filename> changes the name of the output file to
<filename>.EXE. If this option is not specified, the name of
the first object file in the list with the .EXE extension will be
used. \

-Pl<filename>] Generates a sorted list of publics and offsets. C
procedures and data declared outside of procedures are
automatically public (or extern) unless explicitly declared
static. Publics with names starting with an underline *_' are
not listed unless the -_ option is also specified. The optional
name is the destination for the publics list. If omitted, the
publics and offsets are listed on the console. The size of
overlays, if any, will also be displayed.

-Shhhh Specifies the stack size. hhhh is in hex. Normally,
BIND will set the stack size as large as possible for the Small
Case memory model, and to 8K bytes for the Large Case
memory model.

-Vn This option is used to create disk-based overlays. All object
files following this option, until the end of the list or another
overlay option, are collected into the overlay indicated by
the value n (1 to 39). See the overlay section below for
details.

-_ (underscore) — BIND normally suppresses names that start
with an underscore (usually internal names) from the publics
list and the .CHK file. The underscore option makes these
names available. This option is required when you need to
see all the modules bound to your program.

6.2

The BIND Object File Linker

Examples

bind blip

binds the file blip.o with CSTDIO.S and produces the executable file
blip.exe. ' '

bind proga progb progc lib.s -p

binds the files proga.o, progb.o, and progc.o with the user library lib.s
and the standard I/O library, CSTDIO.S, into the application file
proga.exe. The map is printed on the screen.

bind proga progb -V1 progc -v2 progd -Pmap -_ -Omyprog

binds the files proga.o, progb.o with CSTDIO.S and creates the
executable file myprog.exe and the overlay file myprog.ov which
contains two overlays consisting of the object files progc.o and prod.o.
The publics map is sent to the file named map and will also list the
internal names that begin with the underline (*_*) character.

Small Case Bind
Space Considerations

A program is restricted to a maximum of 64KB of code and 64KB of data plus the
stack. BIND calculates the size of code and data and will report the size of each
segment (in hex) when the -P option is specified. BIND cannot calculate the actual
stack requirements. If the 'stack’ and 'locals' size reported by BIND seems small,
the actual stack requirements should be calculated by hand to make sure there is
enough space. The actual requirements are the worst case of four bytes per call plus
the size of locals (including parameters) for all active procedures plus about. 500
bytes for the Operating System calls. In practice, 2KB plus the size of the local
arrays simultaneously active should be sufficient.

If BIND reports that the code limit is exceeded, look in the publics map for the
scanf() and printf() routines. These are relatively large routines (around 2KB each)
and also link in the floating-point routines. Eliminating the use of these routines can
result in a large savings. If scanf() and/or printf() are necessary but no
floating-point values will be used, try using the CSTDIO7.S instead of the standard

6.3

The BIND Object File Linker

CSTDIO.S library (Rename the CSTDIO.S library to something else and rename
the CSTDIO7.S library to CSTDIQ.S). This will assume the availability of the 8087
math chip and will not bring in the software floating-point routines.

Another way to save some space is to use the CREAT2.C file from the optional
HACKERS disk (not distributed with the compiler) which contains a version of the
I/O routines open(), close(), etc. that only work with MS-DOS 2.0 and later
versions of the operating system. This saves around 3KB but will not allow the
program to be run under MS-DOS 1.xx.

Overlays

Another way to solve the space problem is the use of overlays. The overlay system
provided by this package is very simple. An application is divided into a root
portion that is always resident and two or more overlays. Only one overlay is

resident (executable) at any given time. The following diagram outlines the
relationship between the root and the overlays:

root . code
code —”‘——‘_—’,,——,,——" — overtay 1
_Adata
overlay ' “ode
code . overlay 2
data
root .
data .
overlay
dats code
: overlay n
stack data

There are two types of overlays, disk-based overlays and memory-based overlays.
The difference between the two types is the location of the overlays. Disk-based
overlays, created with the -V option, are stored in a separate file. Memory-based
overlays, created with the -M option, are loaded into memory along with the root
code. Memory-based overlays should only be used when there is sufficient memory
for the root and all of the overlays. The advantage of memory-based overlays over
disk-based overlays is in the amount of time needed to make an overlay resident,
memory-based overlays being much faster to load.

6.4

The BIND Object File Linker

The application program is responsible for initializing the overlay subsystem and
ensuring that the correct overlay is resident before calling any of the functions in
the overlay.

For disk-based overlays, the routine overlay init () must be called from the
root with the name of the overlay file to initialize the overlay system. Overlays are
loaded by calling the routine overlay (n) where n is the number of the overlay to
be made resident. '

For memory-based overlays instead of disk-based overlays, do not call the
overlay init () routine and call the routine moverlay () in place of the
routine overlay () . '

In the following example the root is composed of the file X.C. The first overlay is
the file Y.C and the second overlay is in the file Z.C. "

File X.C:
main() {
overlay_init("X.0V"); /* initialize */
puts("this is the root program\n");
overlay(l); /* make 1st overlay resident */
zip(); /* call into 1lst overlay */
overlay(2); /* make the second resident */
zap(); /* call into second overlay */
puts ("bye\n") ;
}
File Y.C:
zip() {
puts(” this is zZIP "); .
}
File Z.C:
zap () { ‘
puts(” this is zap ");
} . o

6.5

The BIND Object File Linker

The files are compiled in the usual fashion:
c88 x
c88 y
c88 =z

Ordinarily, the files would be linked together using the command:
bind x y z

Ihstead, to create the two overlays, the command:
bind x -V1 y -V2 z ’

is used. The -V option is followed by the overlay number. This number starts at 1
and runs in ascending order up to 39." All files following the -V or the -M option are
included in the overlay. All library modules (from .S files) are included in the root.
" The result from the execution of the BIND program with the -V option is the
executable root (.EXE) file and the overlay (.OV) file which contains the overlays.
The result with the -M option is an .EXE file containing both the root and the

overlays.

D88 knows about the overlays and will not display public symbols that are not
resident. The profiler does not know about overlays and should not be used.

The -P option of BIND will also display the size of each overlay as well as the
overlay for each symbol.

Large Case BIND

The Large Case Binder's name is BBIND. In most respects BBIND is identical to
BIND. The differences are:

* BBIND only works with Large Case object files-and libraries.

» BBIND uses BCSTDIO.S instead of CSTDIO.S. Rename BCSTDIO7.S to
BCSTDIO.S if you use an 8087.

» The default stack size is 2000H (8096) bytes. This should be more than
enough unless you have a huge amount of local data. The stack requirements

. are six bytes plus the local data space required for each active function call.
You can change the stack size with the -s option.

.» Overlays are not supported.

» The -p (Publics) map displays four byte addresses.
6.6

The BIND Object File Linker

Libraries

Libraries are just concatenated .O files. The .S extension tells BIND to only include
modules that are referenced. If all of the routines in a library are required, rename
the .S file to a .O file to force all of the modules in the library to be included.

BIND includes the entire .O module from a library if any of its public names have
been selected by other object modules processed by BIND. Thus, if a .O file
contains several functions, all of them will be bound into a program if any of them
are called.

" BIND searches a library once. Thus if you have two modules, A and B, and A calls
B, the B must follow A in the library. LIB88 attempts to order the library so that
these inter-library references are ordered so that BIND will find them. 'One way
around any circular dependencies (e.g., B also calls A) is to include the library
twice on the command line.

6.7

Chapter 7
The LIB88 Object File Librarian

Introduction 7.1
Invocation ' 7.1
Examples 7.2

Libraries , 712

Introduction

The LIB88 Object File Librarian

LIB88 is the program that combines object modules into library modules. Libraries
are simply collections of object files in a single file from which the BINDer can
select the necessary modules. By using a library, only those modules required by an
application will be bound into the executable (.EXE) file. ‘

You can't mix Small Case memory model and Large Case memory model object

files in the same library.

Invocation

LIB88 <filename> <filename>... [option]

<filename> names of object files or other libraries. If no extension is given
on the filename, '.O' is assumed.

Options

The case of the option is not significant., Each option should be
separated from other options by blanks. Options must be
preceded by the minus sign (-') character to distinguish them
from <filename>s.

-F<filename> the pathname of a file containing filenames and

options to be used by LIB88. This is used to get around the
128 character command line limit.

forces all input modules to be included in the output even if
publics clash. Normally when there are duplicate public
symbols, the module with the first occurrence of the
symbol is kept; all others are ignored.

-O<filename> supplies the name of the target library. No

extension should be included as LIB88 will add the
extension '.S' which is required for a library. If omitted,
the first filename forms the basis for the library name.

Caution: if a library (.S) file is first on the LIB88
invocation, the -O option must be used or no.library will
be created. The <filename> cannot be the same as the .S
name.

-P[<filename>] A list of code publics is produced. The list goes

to the named file if present, otherwise to the console. Data
7.1

The LIB88 Object File Librarian

publics are not included in order to make the list shorter. A
minus sign is in column 1 at the start of each'module.

- (underscore) Publics that start with underscore are
normally omitted from the publics list. The underscore
option will include them.

Examples

LIB88 xx yy zz -0Oxlib

combines the object files xx.0, yy.o, and zz.0 into a library named xlib.s
LIB88 xx -Fblip

where blip contains

vy 2z
~-0x1lib

behaves exactly the same as the first example.

LIB88 xx xlib.s -Oylib

replaces the object file xx.o in the xlib.s library and places the result in a new
library named ylib.s.

" Libraries

Libraries are simply collections of object modules that are included into a program
by BIND as necessary.- A library is only searched once by BIND so if a library
member A calls library member B, module B must follow module A in the library.
The librarian will attempt to sort modules so the caller comes first in the target
library. If modules call each other, LIB88 will print the warning

circular dependencies

- The -N (for need) option is used to force object files in a particular order (ignoring
circular dependencies). It ignores the LIB88 sort logic and concatenates all the
<filename>s into a library.

LIB88 installs the first occurrance of a PUBLIC name into the target library. Thus
if two modules have PUBLICs in common, then the module encountered first will

7.2

The LIB88 Object File Librarian

be installed in the library. Thus to replace the CSTDIO.S version of gsort () with
your own, you would do the following

c88 gsort

ren cstdio.s cstdio.o

1ib88 gsort cstdio -ocstdio
del cstdio.o

CSTDIO.S was renamed to CSTDIO.O to avoid any conflict of reading and writing
to CSTDIO.S during the update. '

LIB88 cannot replace object modules in libraries with circular dependencies. To
update libraries that have circular dependencies, use both the -F option to name the
file of module names, and the -N option to suppress LIB88 sorting.

Libraries are just concatenated .O files. The .S extension tells BIND to only include

modules that are referenced. If all of the routines in a library are required, rename
the .S file to a .O file to force all of the modules in the library to be included.

7.3

Chapter 8

The D88 C Language Debugger

Introduction
D88 Usage
Command Input
Expressidns

Commands
Again
Breakpoint
Collection
Display
Expression
Flip
Go
List
Macro
Options.
Proc-step
Quit
Register
Step
Unassemble
Variables
Where

@00 00 0 0
Lith W W e

00 00 ¢
ol

O 00 00\

99 00 00 00 00 90-00 00 09 00 ©0 00 00 0O
T b gk et ek ped pd ik pand ek ek Fe <
AN BEBRPDWND=O

The D88 C Language Debﬁgger

Introduction
D88 is the C source language debugger for C88. Its features include: |

Full screen display.

C source can be displayebd while executing.

All local and global variables can be displayed.

C expressions can be evaluated. |

Special support for debugging interactive programs on the PC.
Breakpoints by address or line number.

D88 only works with programs produced by the C88 compiler because it needs
special symbol, type and line number information. It is not as good as DEBUG
when dealing with assembler programs. Like all debuggers, D88 needs lots of
‘memory -~ about 45K extra for small programs and 64K for large ones. For
systems that are not IBM PC compatible, D88 will have to be configured before it
canbe used. See the the instructions in the CONFIG.C file on Disk #2.

CAUTION: do not change floppy disks while D88 is executing. Changing any disk
while a program is running may clobber the new disk.

D88 Usage

D88 needs symbol information that is not normally created. Before using D88, a
program should be compiled and bound with the ‘C' option in order to create the
symbol information. You can bind in modules that were not compiled with the 'C'
option, but their symbol and line number information will not be available.
Assuming that the C88 compiler, binder, library (CSTDIO.S) and D88 are on drive
A: and that the D88 sample program CB.C is on drive B: the following commands
will compile CB.C and create the symbol file.

A>C88 B:CB ~C '
C88 Compiler v2.5 (c) Mark DeSmet, 1982,83,84,85
end of C88 04B7 code 00D7 data 21% utilization

"A>BIND B:CB -C

Binder for C88 and ASM88 V1.9(c) Mark DeSmet, 1982, 83,84, 85
end of BIND 19% utilization

8.1

The D88 C Language Debugger

~ The 'C’ options will create the checkout file CB.CHK in addition to the usual
executable CB.EXE file. The CB.CHK file contains pathnames so the user should
invoke D88 with the same default drive (and current directory with MS-DOS
V2.xx, ...) that was in effect during compilation so that D88 can find the C source.

" The CB.C program is executed by
B:CB filename .-
For example, to run CB on itself:

A>B:CB B:CB
231 lines
A>

No errors were detected. To debug or trace a program, prefix the normal
execution line with D88. Using the above example:

D88 B:CB B:CB

D88 will clear the screen, print the banner and issue the following prompt.

Again Breakpoint Collection Display Expression Flip Go --spacé--

D88 Debugger V1.4 (c) Mark DeSmet 1984,85

D88 command input is similar to SEE command input. The top line contains a
partial list of available commands. To see the rest, hit the space bar and the top line
will change to the next prompt line. The prompt lines are:

Again Breakpoint Collection Display Expression Flip Go --space--

List Macro Options Proc-step Quit Register Step --space-~--
Unassemble Variables Where --space--

8.2

The D88 C Language Debugger

Error messages are displayed on line two. The fourth line gives the name of the
current procedure, the name of the current source file and the current line number.
This line is always displayed. The remainder of the screen scrolls in the usual
fashion.

Command Input

As with the SEE editor, commands are entered by typing their first letter. For
example, typing 'R’ will display the registers. Commands may be entered in upper
or lower case and the command need not be displayed on the prompt line to be
executed. The Again, Display, List and Unassemble commands can be preceded by
a decimal repetition count. The count specifies how many lines should be processed.

If a command has options, a prompt is issued to ask for them. For example: type 'L’
for List and the following prompt will be issued on the top two lines.

enter list line number or search string
exchange: 18

The cursor will be at the first letter of '18'. Typing return or ESC means the
number is correct. To change it, the number may be overtyped or edited with the
following keys.

-> The right arrow moves the cursor to the right.
<- The left arrow moves the cursor to the left.
Ins The Ins key toggles between Exchange mode and Insert mode. The

prompt changes between ‘exchange:' and 'insert:'.
Del Deleies the character under the cursor.
backspace Deletes the character to the left of the cursor.

When any editing is complete, press Return or ESC. During input, type control-C
to abort the command and return to the main prompt.
Expressions

Several commands will accept expressions. Expressions follow the usual C rules
and are composed of variables and constants combined by operators. '

8.3

The D88 C Language Debugger

Variables can be referred to by name; case is ignored by D88. Only extern or static
variables, local variables in the current procedure and parameters of the current
procedure can be referenced. There is no way to reference locals of another
procedure. Statics are not scoped by file -- the first entry in the symbol table is
used. Statics that are defined within a procedure have their name prefixed by the
procedure name and ' ', e.g. static int i; in main is called MAIN_I. The Variables
command will list the names of variables and the Expression command will display
their values.

Examples: argc 1 nextin main_4i -
Registers may be referred to by name. Example: ax

Constants may be of type int, long or float. Hex constants must start with '0’
but must omit the "x'. Octal constants are not permitted. Strings and character
constants are as usual. Examples: 2 23.6 1e6 o0tabc 'A* “"hello world!"

Member references may follow the '’ or '->' operator.
Examples: stru.mem sptr->mem

Most of the usual C operators are supported. They are listed below in order of
precedence.

assignment =
addition, subtraction +-
multiplication, division, modulus *! %
contents of *
address of &

prefix minus -

array 0
parenthesis . 0
function call name()

 Examples of expressions:

2+2 *argv(l] stru->mem &vara ax=44 "hello"[2]) printf("%d",2+2)

The last example shows that functions in the program under debug can be executed
by the Expression command. An expression followed by (arguments) will be called
but referring to a function name not followed by the '(’ yields the offset of the
function.

8.4

‘The D88 C Langﬁage Debugger

Commands

To learn D88 try out all of the commands on the CB program. One caution: when a
function is first entered, locals and parameters cannot be accessed until you use the
Step command to move down to the first executable instruction.

[n] Again — only has meaning after a Display, List or Unassemble command.

Prompts:

Output:

It displays the next n lines of bytes, source lines or disassembled
instructions respectively. If the count is omitted, 10 lines of source or 3
lines of bytes or disassembled instructions are displayed.

none.

Depends upon prior command.

Breakpoint — sets a 'sticky’ breakpoint. A breakpoint is a place where

Prompts:

execution will stop after a Go command. A 'sticky’ breakpoint is one
that remains in effect until changed or the Quit-Init command is
entered.

enter number of sticky breakpoint, 1 2 or 3.

There can be up to three sticky breakpoints, numbered 1,2 and 3. Enter
the number of the breakpoint you wish to change.

Address-break Line-number-break Procedure E-‘oreverv

Enter AorP if you want to break at an address or procedure. The
next prompt will be:

enter procedure name or address

Enter an expression that indicates where you wish to stop, €. g. puts or
Oalc. -

RS

The D88 C Language Debugger

Enter L if you want to stop at a specific line number. The next prompt
will be :

input line number

The file is the current file unless changed by the Options-Listfile
command. There is no default line number. Only line numbers for
lines containing executable instructions can be referenced. You
cannot break at a declaration or comment.

Enter ¥ for Forever to remove a sticky break or Go to completion.

[n] Collection — displays the elements of an array or structure. The optional
repetition count is the number of array elements that will be displayed.
If a member is specified, that and all subsequent members of the
structure will be displayed. The display format is the same as that
described under the description of the Expression command.

Prompts: input an array name.or structure.member.

Output: Assuming the following program,
~ char a(5]={(1, 2, 3, 4, 5},
b(311(51=(1,2,3,4,5,6,7,8,9,10,11,12,13, 15},
*c=&a;
struct {int i,3j,k:;} str={11,22,33},
*st=&str;
main() {;} '

The following collections can be displayed.

input an array name or structure.member

exchange: a

array at 0004

[0]= 1 [1]= 2 [2]= 3 [3]= 4 [4)= 5

input an array name or structure.member
exchange: b
array at 0009
[0)=array at 0009 [l1]=array at OOOE [2}=array at 0013

input an array name or structure.member
~exchange: b{1]
. array at O00E

[0]= 6 [1]= 7 [2]= 8 [3}]= 9 [4]= 10

' 8.6

'ﬁxe D88 C Language Debugger

input an array name or structure.member

exchange: ¢

0004—>

[0)= 1 [1]= 2 {2]= 3 [3)= 4 [4)= 5 [5]= 1
[6]= 2 {7]= 3 (8]= 4 [9}= 5

input an array name or structure.member
exchange: str
structure at 001A

input an array name or structure.member
exchange: str.i - .
L= 11 000B o Jm= 22 0016 K= 33 0021

input an array name or structﬁre.member
exchange: st->i
oI= 11 000B J= 22 0016 K= 33 0021

The examples demonstrate the following rules:

1. If an array name is entered, the address of the array is printed followed by
the first 10 (or repeat) elements.

2. A pointer is handled the same way except that the number of elements is not .
known. Notice that arrays used as parameters are passed as pointers so the
number of elements is not known.

- 3. If the name of a structure element is entered, that and all subsequent
members are displayed. Either the "' or '->' operator may be used as
appropriate. -

4. If any other type of expression is entered, the value is displayed.

See the Expression command for the rules for element display.

[n] Display — displays memory in hex and ASCII. In contrast to Expression,
types are ignored. The optional repetition is the number of lines to
display. The default number of lines displayed is three.

Prompts: input [segment:] offset

Normally a pointer name is input to see what it points to in hex. Notice
that if a variable name is input, the variable value is used (e.g. if i is 3
then a Display of i is the same as a display of 3). Use the address (&)
operator to see how a variable looks in hex — &i would display iin..
hex. The data segment is always assumed. Use an override to display
other segments e.g. cs:0.

8.7

Output:

The D88 C Language Debugger

75B8:07BE 2F 2A 09 43 42 43 48 45 43 4B 2E 43 20 20 2D 2D
75B8:07CE 09 44 75 6D 62 20 43 75 72 6C 65 79 20 42 72 61
75B8:07DE 63 65 20 43 68 65 63 6B 65 72 20 66 6F 72 20 43

_Expression — evaluates and displays the results of an expression. A procedure

. Prompts:

-Output:

can be executed by including its name and parameters in an expression
-- be careful of side effects. Only a subset of the normal C operators is
supported but otherwise expression rulgs for precedence, pointer
arithmetic and type conversion apply. The assignment operator can be
used to set a variable or register. Static variables within functions have
their name preceded by the procedure name and an underscore.

zip() { static int i; }
"' would be referred to as 'zip_i' in the debugger. Examples:
242 argc argv{1] nextin bp+4 puts("hello!") puts ptr->off i=44

input an expression

Chars are displayed in unsigned and ASCII if possible, e.g.
C 67.
Unsigned are displayed as unsigned and hex.
A pointer is displayed in hex. In addition, the string '->' prints and the

element pointed to are displayed. In the case of a pointer to a character,
up to 21 characters are displayed on the assumption that the pointer is

to a string.

Ints are displayed as decim.al and hex.

Float and double are displayed as %9.2E.
Longs are displayed in decimal.

Arrays are displayed as ‘array at' hex ‘addre'ss,

Functions and structures are similar to arrays.

8.8

Flip

Prompts:

Output:

[n] Go

The D88 C Language Débugger

Debugging graphic or full screen applications can be a real problem as
both debugger and application need to use the screen and the two
displays interfere with each other. The Flip command is part of the
mechanism designed to deal with this problem.

The Flip command will flip the screen. It only works on PC .
compatibles as it is hardware dependent (see notes in CONFIG.C and
FLIP.A on configuring this capability). The idea is that the user should
have two screen displays — one which is produced by the program
under debug and the other which is used for the D88 display. The
application screen is automatically restored before the Go command
resumes execution. The Flip sub-option of the Step and Proc-step
command must be used to restore the application screen before
executing any command that affects the screen display. When the
screen image is preserved in this way, the Flip command can be used to
display the application screen. Pressing any key will return to the D88
screen. : :

none.

The application screen will replace the D88 screen. Hit any key to
return to D88. :

causes the program being debugged to execute. "The user is prompted
to enter one breakpoint. The description of the Breakpoint command
describes how this breakpoint may be entered. The breakpoint may be
at the current address; if you enter an address breakpoint of IP, the
program will execute until it returns to the starting point. This can be
used to execute one iteration within a loop.

After a Go command, 9 lines of the source are displayed. A ->' points
to the current line. The Option command can turn this feature off.

The optional repetition specifies how many breakpoints should be hit
before execution ceases. A count of 10 Go's to IP would execute a loop
10 times.

If the Option command sets the ‘Flip on Go' option off, the output of
the debugged program and D88 output will be intermixed. The default
is to display the debugged programs output before execution
commences. -

8.9

Prompts:

Output:

- [n] List

Prompts:

The D88 C Language Debugger

Once started, a program will execute until a Breakpoint break is hit, the
Go breakpoint is hit, EXIT is called or control break is hit. In any
event the Go breakpoint will be removed. Under DOS 1.x (and
CP/M-86), EXIT and control break will cause D88 to terminate.

Under MS-DOS 2.xx, ..., ‘normal end' prints and D88 continues. The
Forever option should be used if you wish the program to run to
completion or to a sticky break set by the Breakpoint command.

Address-break Line-number-break ~Procedure Forever

See the description of breakpoint entry under the Breakpoint command
description.

The program will execute.

lists any ASCII file. It is normally used to list the source of the
program being debugged. If the count is omitted, 10 lines will be
listed. After a List command, the Again command can be used to list
more lines without entering the line number.

The current file is the one listed unless the Options-Listfile command is
entered.

The prompt asks for the line number or a string. If something other
than a number is input, then the List command only lists lines that
contain the characters. Searching always starts from top of the file.
The search string option can be used to find a procedure definition or
variable references. ' -

enter list line number or search string
The default is the current line number or the last line listed if the List

command was just executed. Enter return to list source from the
current line or a decimal line number or a search string.

8.10

Output:

Macro

Prompts: '

Output:

The D88 C Language Debugger

enter list line number or search string

exchange: 18
18 main(argc,argv)

19 int argc;

20 char *argv[]; ({

21 int ch;

22 char col;

23

24 if (argc < 2) error("no file name","");
25 read file(argv(l]);

26

27 while (1) {

enter list line number or search string
exchange: read file

25 read_file(argv(1l]);

47 read_file(fil)

remembers commands or sequences of commands. Four Macros can be
defined — F1, F2, F3 and F10. All keyboard input is collected into a
Macro until another Macro command is entered. Once defined, a
Macro is executed by simply hitting the appropriate function key. A
Macro can be up to 80 keystrokeslong.

enter ‘name of macro. F1 F2 F3 F10
Hit the appropriate function key.

enter another Maéro command to end définition

Printed after the above prompt is answered. All input will be
accumulated into a Macro until another Macro command is entered.

Macro is defined
Printed if the Macro command is invoked to end a Macro definition.
F10 is a ‘permanent' Macro. If defined,‘ it is run every time the screen

is re-written and its output is placed after the top 3 lines. This permits
variables to be permanently displayed.

8.11

~ Options

Prompts:

The D88 C Language Debugger

For example:

M (hit M for macro command)

F10 (hit function key 10 as name of macro)

E (hit E for expression command)

"i=",i,"3j=",3j,"k=",k (enter expression — note the comma
means a list of values)

M " (end macro definition)

Aline like i= 44 j= 2 k= 11 will be displayed near the top of the
screen until F10 is redefined. The values are thus continually updated.

There are currently three options: flip screen on go, list after go, and
list file name. ' o

The Flip-on-go option allows D88 output to be intermixed with user
output. The default is to flip the screen before a go executes. The
disadvantage of not flipping is that the output of the application will be
intermixed with D88 output. The disadvantage of the default is the
flashing that occurs if the Flip is not needed.

The Go-list option can disable the listing of source after a go command.
Every Go, Proc-step and Step command sets the current listfile name to
the file containing the current statement. This name is used by the List,
Breakpoint and Go commands. Use the List-name option to change the
name. '

'Flip—on?-go Go-list List-namé"

If ¥ istyped,
flip screen on Go (y or n) ?
Entér "Y' or'y’ to set the option on, 'N' or 'n’ to turn it off.
If ¢ is typed, '
list after a Go (y or n) ?
Enter "Y' or 'y’ to set the bption on, 'N' or 'n’ to turn it off.

If L istyped,
8.12

Output:

The D88 C Language Debugger

input list file name
Type the desired filename.

none.

)

I3

Proc-step The Proc-step command prints the current source line and allows the

Prompts:

Output:

user to execute it. Proc-step differs from Step in only stopping on lines
in the current procedure. Proc-step also stops after a return so you can
Proc-step back to the calling procedure. Step will stop on any line.

A Flip option allows the user screen to replace the D88 screen during
stepping. If this option is not invoked before statements that affect the
screen, then program output will be intermixed with D88 output.
When the screen is flipped, there is no prompt but the user must still hit
space to execute the next statement. Typing 'F for Flip will restore the
D88 prompt.

Only executable lines will show up while stepping; declarations and
comments are not listed.

The procedure MAIN file B:CB.C line 18 line is updated
during stepping.

Flip Proc-step Step space to Proc—stép. default=quit.

F will flip the screen. $ will change from Proc-step to St epand
step the current line. ® will change back to Proc-step and step the
line. Space will Proc-step or Step, whichever is current. If the
screen is not flipped, the next line will print. Typing anything else will
terminate stepping. - .

When the screen is not flipped, the current line prints as a prompt.

8.13

Quit

Prompt:

Output:
Register

Prompts:

.Output:

Step

The D88 C Language Debugger

The Quit command terminates a debugging session and either exits to
the operating system or starts a new session. On exit, the user screen is
restored.

The Initialize option allows debugging to begin again. Caution: files
are not closed. You may run out of files or not be able to re-open files.

Quit: Exit Initialize

4

E restores the user screen and returns to DOS. If the program has
been EXITed or interrupted with control break, you can only Exit. I
displays the following prompt:

input command line

Enter the part of the command tail that would follow D88, if D88 were
being executed; e.g.

CB CB.C

Press the return key if you change your mind and do not want to start
over.

D88 quits or starts over with the indicated command tail.

The Register command displays all the registers. Use the Expression
command to set a register to a value.

none.

AX=7500 BX~FFEB CX=0000 DX=0000 SI=FFFF DI=07BE BP=FFBE SP=FF90
DS=757E SS=757E ES=757E CS=729E IP=0003 FL=F206

The Step command prints the current source line and allows the user to
execute it. Step differs from Proc-step in stopping at every line — not
just lines within the current procedure. If you step a line that contains
a call to another procedure, you will step through the called procedure.
See the description of the Proc-step command for details on this
command as Step and Proc-step are otherwise identical.

8.14

The D88 C Language Debugger

[n] Unassemble — The Unassemble command disassembles some

Prompts:

Output:

instructions. The repetition count says how many instructions should
be disassembled. The default is 10. The Again command can be used
after an Unassemble command to print more instructions without
re-entering address. Disassembled output follows normal assembler
rules except that relative jumps print their target as absolute numbers
(A=hhhh). ‘

If the repetition count is /', the Unassemble command will disassemble
one line and prompt with a'?". Pressing the space key causes the
instruction to execute. This continues until the user presses a key other
than the space key

input [segment:]offset

The default address is the current one. If an expression is entered, it is
assumed to refer to an instruction in CS:. An explicit segment can be
entered, e.g. 0123:0da.

729E:0003 55 PUSH BP
729E:0004 8B EC MoV BP, SP
729E:0006 83 EC 04 SUB Sp,0004

Variables The Variables command will list the program variables, optionally

with values. Pressing return to the prompt will produce a four across
list of all variable names. The locals accessible to the current procedure
are listed first, followed by the publics. Both are sorted. If a name or
name pattern is entered, the variables are listed with their value. The
values are formatted according to the rules for the Expression
command. An asterisk ("*') at the end of a name means match any name
that starts with the preceding letters. An asterisk by itself will list all
variables with values.

Caution: before the first instruction of a procedure is executed, the

stack frame is not established and parameters will not be printed
correctly.

8.15

Prompt:

Output:

Where

Prompts:

Output:

- The D88 C Language Debugger

input variable name or pattern (a* means start with a)

input variable name or pattern (a* means start with a)
exchange:

ARGC ARGV

ATOI ATOL A B

CI co CSTS : C

EXIT GETCHAR III IX
INDEX I JJJIIJT - JJJJg
JJJ JJ J " MAIN
PUTCHAR PUTS RINDEX . ° STRCAT
STRCMP STRCPY STRLEN STRNCAT
STRNCMP STRNCPY

input variable name or pattern (a* means start with a)
exchange: i*.

III = 5 0005

IT = 3 0003

INDEX = function at 031E
I = 2 0002

The Where command list the current procedures. The name, file and
line number of every procedure currently executing will print.

none.
procedure READ FILE file CB.C 1line 56

procedure MAIN file CB.C 1line 25

8.16

Chapter 9

Utility Programs

CLIST: a listing & xref utility
DUMP: a hex and ascii display utility
FASTSCR: a screen output enhancer
FREE: a free space display

GREP: a file search utility

LS: a directory listing utility

MERGE: a C source and assembly language
merge utility

MORE: a file screen listing utility
PCmake: a program maintainance utility
PROFILE: a performance monitor utility
RM: a file removal utility

SENSE87: an 8087/80287 sensing library
TQOLBOX.S: a library of useful tools

9.1
9.2
9.3
9.3
9.3
94

9.5

9.5
9.6
9.9
9.11
9.12
9.14

Utility Programs

CLIST: a listing & xref utility

The clist utility reads C source programs and produces a listing, or a file, which
contains a paginated, line numbered listing of the C source lines and a symbol
cross-reference map.

To invoke the clist program, enter

<filename>...

Options:

clist <filename> ... [option 1

— a list of the C source files to be listed, in the order that they are to
be listed. If no extension is given, .C' is assumed. Clist does not
automatically read the "include” files so they should be listed first. This
is to prevent the include file from being listed by every source file that
"includes" it. Note: if you specify more than one file, the symbols will
be combined into one cross-reference map.

The case of the option characters is not significant. Each option must
be preceded by the minus-sign, '-', character to distinguish it from a
filename. The options are: :

-F<filename> — identifies the file containing the <filename>s to be
listed.

. -L<size>/-P<size> — sets the page length used by the clist program

for generating pagination. The default is 66 lines.
-N eliminates the cross reference listing

-O«<filename> — supplies the name of the output file for the listing.
Without this control, the first name in the list of filenames
is used with the extension, 'L'. If no extension is given on
the filename, '.L' will be used automancally If you wish
to list on the printer use -OPRN:

-T<size> sets the width for tab characters (the maximum number of
spaces that a tab occupies). The default expansion size is 4.

-Wxsize> sets the width of the listing. Lines wider than the width are
wrapped to the the next line. The default width is 80.

9.1

Utility Programs
For example
clist blip.c

will generate a file named'blip .1 with the following contents

BLIP.C dd/mm/yy hh:mm:ss Page 1
1 main() {) -

2 int i;

4 printf("Table of Characters\n");

5 for (i = 0; 1 < 256; i++) {

6 printf("Character %d prints as %c\n",i,1);
7 }

8 }

—==—XREF---—-

i 2 S 5 5 6 6

main 14

printf 4 6
The symbol, '#', following the ‘main’ symbol in the cross-reference listing indicates

that the symbol was declared on that line. Clist only supplies the declaration line
information for procedures or data declarations which begin in the first column.

Dump: a hex and ascii display utility

The dump utility program is used to display the contents of a file in hex. It is
available in bot._h source (.C) and executable (.EXE) form.

To invoke the program, enter
dump <filéname>
The dump program displays 16-bytes per line with each line showing the offset to

the first byte in the line, the 16 hex values, and the character equivalent enclosed.
between asterisks (¥). For example:

0000 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 *ABCDEFGHIJKLMNOP*
0010 51 52 53 54 - 55 56 57 58 59 5A 00 00 00.00 00 00 *QRSTUVWXYZ...... *

9.2

_ Utility Programs
FASTSCR: a screen output enhancer

This is a simple program to make character output to the screen run faster than the
standard IBM-PC BIOS routines. It works by intercepting the level 16 interrupts
(int 10H) and routing the character output(write tty) requests to code which acts
directly on the screen buffer. Requests which are not supported are passed on to the
normal BIOS routine, :

Works for all programs which use the BIOS calls or DOS calls.
To install the program, simply run

fastscr

FREE: a free space display

free is a very simple program to show the amount of free space left on a drive
without having to watch a directory listing. The syntax for free is:

free <device>

where <device> is A: B: ...

GRERP: a file search utility.

grep is a program used to search files for lines containing a certain pattern.
Whenever the pattern is found, the line is listed on the screen. The syntax for grep

is:
grep [-y] <search pattern> file ...

-y indicates that case is to be ignored during the search.

<search pattern> s any sequence of characters. It may contain the wildcard
characters * and 7. NOTE: if the pattern contains blanks or
wildcard characters, then the search pattern must be enclosed
within double quotes (").

file is any filename and may contain wildcard characters.

When a match is found, grep will display the line along with the line number and
filename. :

9.3

Utility Programs

LS: a directory listing utility

Is is a directory listing program loosely based on the Ul\fiX utility. It features
multiple-column listing, sort by name or modification date and reverse order
sorting. The syntax for running Is is:

1s
-1
-t
-r
-1
-2
pathname

[-ltrl? 1 [pathname ...]

invokes the long format which is a single column listing with the
following format:

<name> <attrib> <size> <time> <date>

<attrib> has three character fields. The first field displays the type of
file. The second field indicates read permission. The third field indicates
write permission.

IYPE READ WRITE
normal files

system files
directories
hidden files
readable

not writeable
writeable

o o VRN I |

w

changes the sort order to list files by their modification dates rather than
the default alphabetical order. Times are hsted with the most recently
modified files first.

reverses the order of the sort, alphabetic or by time.

produces a single column of output.

displays the inpﬁt syntax for Is.

can be a drive ﬂan;e (C .),' a directory hame, or a filename which may

contain the wildcard search characters * and ?. If no pathname is given,
the current directory is assumed.

At the end of the hstmg, the number of files hsted and the total size of the listed files
is displayed.

9.4

Utility Programs

MERGE: a C source and assembly language merged listing
utility.

merge is a program used to merge a C source file with its correspondihg assembly
language file generated by C88 with the -A and -C switches. The syntax for merge
is ‘

merge <file>
where <file> is the name of the .C and .A files to be merged. The output of the
merge program is placed in the file <file>.L. For example, to get a merge listing of
a file named BLIP: ‘

c88 BLIP A C
merge BLIP

The file BLIP.L will be created with the merged information.

MORE: a file screen listing utility.
more is a program used to view text files. This version is slightly more
sophisticated than the program which is delivered with PC-DOS. It includes the
ability to search for a given string. The syntax for more is:

more file ...

where file may contain wildcard characters.

When the program pauses and displays the ——MORE~- prompt, you havea number
of choices:

/<pattern> searches for a line with the given pattern. If the pattern is not
found, the -MORE- prompt is redisplayed.

Q terminates the program.

N finds the next line with the same pattern used in the last / command.

Any other character will display the next 22 lines of the file.

9.5

Utility Programs
PCmake : a program'maintenance utility

PCmake is loosely based on the UNIX make program. This program is used to
keep track of depedencies between files and, based on the last modification date, Ca.
generate a batch (.BAT) file for updating out-of-date files. This batch file can then
be executed to perform the update.

Invocation Syntax:
PCmake [<dependent>] [-f<input>] ['-o<output>] [-d] [-a] [-1]

<dependent> is the name of the dependent file to check for update requirements
(the first dependent filename used in the input file is used by
default).

-f<input> causes PCmake to get its input from the given file ("makefile" is
used by default).

-o<output> causes PCmake to write the batch file to the indicated file
("makeit.bat" is used by default).

-d lists the dependency tree display to the console.

-a insures that all files are updated regardless of the modificaton
dates.

-i turns-off the error checking produced in the .bat file

The input file to PCmake has the following syntax:
<dependént> [<dependencies>] <constructor>
<dependent> is the file which is to be updated'as necessary.

<dependenc1es> is a list of filenames on which the file is dependent. This list
can span multiple lmes and is terminated by the "]".

<constructor> isanumber of Imes, terminated by a blank line, which are
executed in order to update the file.

9.6

Utility Programs

The simplest example of a file dependency is an object file's dependency on the
corresponding source file. When the source file is altered, PCmake can be used to
detect that the object file is "older" than the source file and can generate the compile
command to update the object file. For example, if we have a source file named
foo . c, with its corresponding object file foo . o and executable file foo. exe, the
makefile might look as follows:

foo.exe [foo.o cstdio.s] bind foo.o
foo.o [foo.c stdio.h] c88 foo.c

Note the "extra" dependencies of the .EXE file on the ¢ library and the object file
dependecy on the standard include header file. If a modification was made to foo.c
and PCmake subsequently executed, it would produce a batch file with the following

lines:

c88 foo.cC

IF ERRORLEVEL 1 GOTO stop
bind foo.o

IF ERRORLEVEL 1 GOTO stop
:stop

which would result in updating the file foo.exe. However, if the source file had not
been changed, but a new cstdio.s library was copied onto the disk, then PCmake
would simply generate:

bind foo.o0
IF ERRORLEVEL 1 GOTO stop
:stop
since the source file doesn't need to be recompiled.

MACROS

A macro is defined by beginning a line with the macro character '$' followed by the
macro name and the definition. For example: "

$FOO a.o b.o c.o

would define the macro $F0O as the stringa.o b.o c.o and could be used in th
dependency line : :

xx.exe [a.0 b.o c.o]

xx.exe [$FO0O]
' 9.7

Utility Programs

Macros may also be used in the constructor lines to allow fast substition for
different environments. For example: to enable the checkout flag on the compiler
while you are debugging, add the macros

$C88 c88
$SC88FLAGS -c¢

and construct your dependency lines like

foo.0 [foo.c stdio.h] $C88 foo.c $C88FLAGS

When you want to generate a production version, redefine $C88FLAGS to null by
specifying
$C88FLAGS

and then use the -a option to recompile everything without the checkout option.

SHORTCUTS

PCmake also recognizes certain filename extensions and can produce dependency
and constructor lines without further user input. The .exe extension is recognized
as being dependent on a file with the .0 extension and is created by using the binder.
The .o extension is recognize as being dependent on either a .c or .a file (in that
order) depending on which file exists and is created by either compiling or
assembling the file.

For a very simple makefile, with only a single file that must be compiled (foo.c) and
bound, we can simply use the following two lines: . .

foo.exe
foo.o0

PCmake will automatically generate the dependency on foo.o for the foo.exe line
and the constructor line

$BIND88 foo.o S$BINDSSFLAGS

For the second line, PCmake will find the file foo.c on the disk and make the
dependency and constructor line

3C88 foo $C88FLAGS

9.8

Utility Programs
Note the use of the macros SBIND88 $BINDS8SFLAGS $C88 SC88FLAGS. This

allows you to tailor the defaults to your system. For example, if your compiler is in
the root directory and on the default directory, you can add the macro definition

$C88 /c88

to your makefile and the PCmake program will replace the macro name $C88 with
the string /c88.

The defaults for the internal macros are: ,

SBINDSS bind8s
SBINDS8SFLAGS <none>
$C88 c88
SC88FLAGS <none>
$ASM88 asm8s

SASMS88FLAGS <none>
Minimizing the first example would yield the following makefile:
foo.exe [foo.o cstdio.s]

foo.o

This will generate the same .BAT file as the original example. Note the blank line
between the two lines. This is required whenever there is a dependency list to
terminate the list of constructor lines. ' '

PROFILE: a performance monitor utility

Profile is a performance monitoring tool for use with the C88 compiler. It provides
a statistical measure of the amount of time spent in a program or procedure within
the program.

With the version 2.3 or later compiler, specifying the check option (-C) for both
C88 and BIND will create a .CHK file. The profiler uses the .CHK file to produce
symbolic output instead of the standard hexadecimal output.

Profile only works on the IBM-PC and very similar machines as it manipulates the
hardware timers. It also requires the use of MS-DOS V2.xx or later.

To invoke the profiler, type:
A>profile

9.9

Utility Programs

The profiler will load and tequest the command line of the program to be analyzed.
Enter the command line as'if you were invoking the program normally. The
profiler will then display one of the following two menus:
If a corresponding .CHK file exists:

All List-procs Procedure Range Quit Start
or if no .CHK file exists:

Range Quit Start

Make a menu selection by typing the first character of the appropriate menu item.

All indicates that the entire program is to be monitored and broken down
by procedure.

List-procs — displays the procedure names and addresses. When entering
the name of the procedure, the wildcard characters * and ? may be
used. * will match anything, ? will match any single character. All
names which match the pattern will be displayed.

Procedure — indicates that a single procedure is to be monitored. The
output will be displayed with the line numbers within the procedure.

Range — indicates that a specific range of addresses within the program is to
be monitored.

Quit aborts the current profiling session.
Start begins the éx_eéution of the program..

After the monitored program exits, control is returned to the profiler which will
display the execution histogram and the following menu:

Disk-list List-again Quit

Disk-list — indicates that the profiling h_istogram'sho.uld__ be written to a disk
file. The profiler will prompt for the name of the file.

List-again — indicates that the histogram should be redisplayed from the
beginning. ' N

Quit exits the profiler.
9.10

Utility Programs

Use the space bar to display the next set of procedures or line numbers in the
histogram. The histogram includes the entries "system” and "other". "system" is
the amount of time measured outside of the executing program'’s code segment.
"other" is the amount of time spent within your code segment but outside of the

measured range.

The profiler also uses two other programs, profstar.exe and profend.exe. These
programs may be placed in the current directory or in a directary identified by the
PATH environment variable.

Sampling Algorithm

Internally, the profiler maintains 1024 counters which are used to monitor the
activity within certain regions of memory. The location and size of these regions
depend on the range specification. The size of each region is determined by
dividing the entire range into 1024 equal size pieces. The minimum size of a given
piece is 1 byte. For example, if the selected range is 0x1C to 0x401C, the size of
each region is 16 bytes. Each time the timer interrupt is generated, the counter
associated with the location of the instruction pointer is incremented. In this

~ example, an IP value between 0x1C and 0x2C will appear in the first region. You
can see that the selection range sets the granularity of the sampling mechanism.
Shorter ranges lead to finer granularity and therefore more accurate measurements.
Because of the granular nature of the sampling method, some sampling errors may
occur. If the end of one procedure and the beginning of another procedure happen
to fall into the same sampling region, then the second procedure will inherit the
count from the end of the first procedure.

RM: a file removal utility

m is a simple program to delete files. The main difference between rm and DEL is
that rm will accept multiple filenames and can work interactively. The syntax for
m is:

m [-i] [-1] filename ...

-1 sets the interactive mode. rm will ask for confirmation on each of the
files before deleting it.

-1 sets the list mode to list the names of the files as they are being
deleted.

filename may contain the wildcard characters * and ?
' 9.11

Utility Programs

If no filenames are given, the program will display its syntax description. (e.g. if
you only type rm or if there are no files which match) . rm does not support
deletion of directories,

SENSES87: an 8087/80287 SENSING LIBRARY

SENSE87 was developed by Dan Lew1s, Key Software Products; 440 Ninth-Avenue
Menlo Park, CA 94025 (415) 364-9847

SENSE87.S contains everything you need to make an 8087/80287 sensing library
for your C88 compiler. This effectively eliminates the need to build two different
versions of your programs, one for machines that have an 8087/80287 coprocessor,
and another for those that don't. Most people have been ‘taking the easy way out,
creating code that never uses the coprocessor, even if one is installed; now your
program can automatically sense the absence or presence of a coprocessor, and take
advantage of its speed if installed. :

The modules included here were created by combining 8087 and non-8087 routin¢
with 8087- sensing software that automatically chooses between the original
routines. Since both the coprocessor and non-coprocessor versions must be in the
sensing library, your EXE file size (in particular, the code segment) will increase,
probably by about 2K bytes, but will depend on how many ﬂoatmg point functions
your program pulls in from the library.

NOTE. If you are using the-O88-optimizer from Key Software Products, be sure to
disable the 8087 option (-7) so that the CALLs to the floating-point library are NOT
replaced by in-line 8087 instructions!

W , YOUR SE C
The file SENSE87.S contains the object files required to create an 8087-sensing
library CSTDIO.S from the standard 8087 library (CSTDIO7.S). Large Case files
are BSENSES87.S, BCSTDIO.S and BCSTDIO7.S. The file SENSES7.BAT
(BSENSES87.BAT) will create the sensing library in the directory you specify.

For hard disks, with a copy of distribution disk #1 in drive A, enter:
C>a:sense87 a :. v
For floppy disks:

B>a:sense87 b::

9.12

Utility Programs

TECHNICAL DETAILS FOR THOSE WITH INQUIRING MINDS
The modified library entry points are the following: (All other library routines that
do floating point computations do so by calls to this floating point kemnel.)

_chk8087 (added) _testinit (deleted) _floadd
_floade _floadl _fstored
_fstoree _fstorel _fxch
_fclear _fempkeep - _femp
_fneg _foot _fzero
_fis ~_fdec _finc
_fsub _fadd . _fdiv
fmul sqrt ' floor_
ceil log_ exp_
atan _tan_

The replacement routines each begin with a JMP instruction that jumps through a
data segment "vector". The vector initially points to a short setup routine which
checks for the 8087/80287. The first execution of the setup routine replaces the
vector with a pointer to the appropriate version of the code, and then jumps through
the updated vector.

The 8087/80287 check is handled by a public routine called "_chk8087" which
actually only checks for the coprocessor once, and saves the result so it can be
returned without resetting the coprocessor on subsequent calls made by other
routines.

The technique used to sense the coprocessor is to execute an FNINIT followed by a
FNSTCW, then to examine the most significant byte of the control word stored by
the FNSTCW for the appropriate value. Some late-model PC/AT's are known to
destroy the segment containing the location of the stored control word, starting
from its offset to the end of the segment. To avoid this problem, the routine copies
DS to ES and the offset of the destination address into SI, then backs off ES while
incrementing SI until the offset is within the range FFFO-FFFF. If it turns out to be
FFFF, then it is changed to FFFO and ES is incremented. Of course this requires
that 32 bytes be reserved within the data segment where the control word is to be
stored.

9.13

Utility Programs
TOOLBOX.S : a library of useful routines

The followihg routines are in TOOLBOX. S located on Disk #1. To include them ir
your program, include TOOLBOX . S in your BIND command line

BIND ... TOOLBOX.S ...
FINDFIL,
int findfile(filename, target_bufr)
searches for the file given in filename by checking the current directéry and the
directories listed in the PATH environment variable. If the file is found, findfile

returns 1 and the target_buf area contains the FULL pathname If the file isn't
found, O is returned.

Requirements: This routine uses 300 bytes of stack.
Limits: only 256 bytes of the PATH variable will be searched.
LINE INPUT ROUTINES:
chazr *cur_liné;
int line_number;

line_start (fname, position, first_line) »

opens the file fname at the location position (long). The first line of the file will be
pointed to by cur_line after this call and line_number will be first_line. Returns 1 if
successful, 0 otherwise.

line_next ()

Returns 1 if another line is available, sets cur_liﬁe to point at the new line and
increments. line_number; returns 0 if no more lines are available.

line_stop ()

closes the input file.

9.14

Utility Programs

line2 start, line2_next, line2_stop, cur2_line,
line2 number

Same as above for a second file.

WILDCARD EXPANSION

main (argc, argv)

This is a C main procedure which expands wildcard filenames out to multiple
arguments. Command line items such as *.c return all the .c files in the current
directory. The user main program must be named main] instead of main for the
linkage to work.

9.15

Chapter 10

The CSTDIO Library
Introduction 10.1
Names 10.1
Program Initialization 10.2
Calling Conventions - 104
Memory Management 10.9
Input/Output Library 10.11
Directory Level Functions 10.11
File Level Functions 10.11
Stream Level Functions 10.12
Handle Level Functions 10.13
Screen Level Functions 10.13
Console Level Functions 10.14
Math Library 10.15
System Interface 10.16
Environment 10.18-1
Library 10.18-2
Headers _
assert.h 10.18-2
ctype.h 10.18-2
math.h 10.18-3
setjmp.h 10.18-3
stdarg.h 10.18-3
stdio.h 10.18-4
stdlib.h 10.18-5
string.h 10.18-6

Functions & Macros
Alphabetical by name

‘The CSTDIO Library

Introduction

This section describes the standard library, CSTDIO.S, for the C88 C compiler and
ASMB88 assembler. This library includes routines similar to routines available in
UNIX with some inevitable differences due to the DOS Operating System.

All the routines are in the CSTDIO.S file provided on the distribution disk. For
BIND to execute correctly, this file must be either on the default drive/directory, in
a directory listed in the PATH system parameter, or on the drive/directory
referred to by the -L option.

Ther CSTDIO7.S library has the same functions as CSTDIOQ.S, but requires an 8087
math coprocessor to perform floating-point operations. To use the 8087 library,
rename CSTDIO7.S to CSTDIO.S.

Names .

‘Public names starting with the underline character ('_') are used by C88 internal
routines and should be avoided. Names of this form are also used for user-callable
routines such as _move () that have names that might conflict with user names.

C88 automatically appends the underline character ('_‘) to public names to avoid
conflicts with assembly language reserved words. ASM88 does not do this so the
underline must be manually appended to publics used to link with code generated by
C88. For example, the C puts () routine should be referred to as puts_ from
assembler. Unlike UNIX, BIND ignores the case of publics, so puts_ matches
Puts .

an 1

The CSTDIO Library

Program Initialization

BIND inserts a jmp _csetup as the first executable instruction in the program.
_CSETUP performs the following initialization functions:

Memory Model ~ Action

1. "Small Case Sets the data/stack segment size to the lesser of: the
amount available memory, 64K, or the size of the static
data area plus the BIND -S option,

Large Case Sets the stack size to the value specified in the BIND -S
option, otherwise sets the stack size to 8K.
2. Both Formats argc and argv[] from the Program Segment
Prefix, .
- 3. .Both Zeros the Uninitialized Data Area, and
4. Both Callsmain (arge, argv)

The figure below shows the Small Case memory layout after initialization:

Stack
_showsp()
Free Memory
_memory()
Uninitialized Data
Initialized Data DS (DSEG)
~ Code
CS (CSEG)
Program Segment Prefix
low memory

Figure 10-1
Small Case memory model

102

The CSTDIO Library

The figure below shows the Large Case memory layout after initialization:

Free Memory
k
Stac ss
Uninitialized DSEG & ESEG
static & Initialized scalars DS (DSEG)
initialized arrays & structures
(ESEG)
Code
CS
Program Segment Prefix
low memory

Figure 10-2
, Large Case memory model

The initialization code saves the address of the Program Segment Preﬁx To access
the PSP address from C use

extern char * _pcb;
From assembly language use

dseg
public _pcb_:word

Assembly language main programs that require normal C address space
initialization should contain the following:

PUBLIC MAIN_
MAIN :

See the Memory Management discussion below for information on how to access the
free memory.

TN~

The CSTDIO Library

The -A option of BIND inhibits the callto _csetup. Execution starts with the
first instruction of the first filename specified to BIND. See the file BUF128.A on
your distribution disk for an example.

On entry, the registers have the following values:

Cs Address of Code Segment. Execution starts at CS: 0.
Ss Address of Data Segment.

ES,DS Address of Program Segment Prefix

SP Stack size set by BIND

The library module that contains _csetup also contains the following functions
— thus they cannot be replaced in CSTDIO.S without removing _csetup.

ci() co () " csts() exit ()
getchar () putchar() puts() _memory ()
_setsp() _showcs() _showds() _showsp()

Calling Conventions

For a given C function, the stack is arranged as follows:

Arguments

Return Addres

Previous BP
; BP

Local Variables

SP low memory

Figure 10-3
Stack Frame Layout

10.4

The CSTDIO Library
The memory model layout is defined in assembler as
if LARGE_CASE .

ARGS_ equ bp+6
SARG equ bp+10

CALL_ lcall
RET lret
else

ARGS_ equ bp+4
SARG_ equ bp+6
CALL_ call
RET_ ret

endif

Called functions must preserve CS, DS, SS, SP, and BP across the function call.
- No other registers have to be preserved.

Function arguments are pushed on to the stack, rightmost argument first. The
calling function cleans up the stack. For example

int *i;
Zip(ir 6);

would generate the following code in the Small Case memory model

mov ax, 6

push ax
push word i_
public zip_

- CALL_ zip_
add sp,4

and would generate the following code in the Large Case memory model

mov ax, 6

push ax

push word i_[2]
push word i_

public zip
CALL_ zip
add sp, 6

The CSTDIO Library

The word modifier is required because C88 allocates variables in bytes rather than
words, double-words, The add sp, removes the words that were pushed as

parameters to zip . Note that C88 appended '_' to names.

If there had been no

local variables defined in the calling function, the clean-up code would have been

mov sp,bp
which is faster.

Data is pushed on the stack as follows:

char pushed as a word, with high-order byte set to zero
mov AL,data
mov AH,O
push AX
int pushed as a word
unsigned push WORD data_
long pushed as two words, with least-significant word pushed
- "~ last ' g
push WORD data_{2]
push WORD data_[0]
float Changed to double and pushed with least-significant
word pushed last
mov si,offset data_
mov ax,ds : Large Case only
mov es,ax ; es:si -> float
PUBLIC _FLOADE ; load float
CALL_ _FLOADE
PUBLIC _FPUSH : push double
. CALL_ _FPUSH
double pushed as four words with least-significant word pushed
last

push WORD data_[6]
push WORD data_[4]
push WORD data_[2]
push WORD data_

10.6

The CSTDIO Library

struct push (sizeof(struct) + 1) >> 1 words, with
' least-significant word pushed last.
mov ¢x,nn ; size in words .
sub sp,cx ; make room on stack
mov di,sp ; target’
mov si,offset data_ ; source
;i set up ds for memory model

mov ax, ss ; setup

mov es,ax ; es

cld ; set direction up
;

rep MOVSW copy to stack

* Small Case memory model — 2-byte pointer
push WORD pointer_
Largé Case memory model — 4-byte pointer

push WORD pointer [2]
push WORD pointer_

The usual preamble for a called function is

PUBLIC fname_

fname_:
push bp - 7 save old frame pointer
mov bp, sp ; establish local frame

For functions that don't return structures, parameters begin in the local frame at
[ARGS_], and continue upward based on the size of each parameter. Thus for the
fragment

~blip(x, y, 2)
int x;

long y;
double z;

the parameters would be referenced in Assembler as

mov cx,WORD [ARGS] H 4

mov ax,WORD [ARGS_+2] ; 1lsw of Y_
mov dx,WORD [ARGS_+4] ; msw of y
lea si, [ARGS +6] ; addr of z_
: - nT

The CSTDIO Library

For functions that return structures, [ARGS_] contains a pointer to where the
structure should be returned, and the arguments begin at [SARG _]. So if the above
fragment was

struct foo blip(x, y,. z)
the parameters would be
mov CcxX,WORD [SARG] .
mov ax,WORD [SARG_+2} ; lsw of y_
mov dx,WORD [SARG_+4] ; msw of y_
lea si, [SARG_+6] ; addr of z_ S§S:SI

Local variables are allocated below the current frame pointer regardless of the
memory model or what the function returns, so that the fragment

{
int aal2]:
long b;

would be referenced as

sub sp,8 . ; allocate space for locals
mov ax, [bp-4] : aa_[1]
mov dx, [bp~8] ; msw b_

The standard exit sequence is
mov sp,bp ; reclaim any local space
pop bp ; old frame pointer
RET_ ; caller will clean up stack

Values are returned from functions according to the following table

char returned in AX. char values are returned in AL with AH
int set to zero

unsigned

long returned in DX : AX. (AX contains Isw)

double returned on floating point stack (s/w or 8087).
float

10.8

The CSTDIO Library
struct returned to address in [ARGS_]

* Small Case memory model — returned in AX
Large Case memory model — réturned in ES:SI.

Memory Management

The Memory managemént functions are:

Function . Effect

calloc() Allocates a block of data and clears it to zeroes
free() Marks a block of data as available for allocation
freeall() Initializes the free memory area

malloc () Allocates a block of data

realloc() Resizes an existing allocated block of data

The Small Case memory model data segment looks like

Stack
_showsp()
Stack Expansion Area
malloc() Area
< _memory()
Global Data Area
< DS, §S
low memory

Figure 10-4 -
Small Case memory management

The CSTDIO Library

The default stack expansion area’ is 1024 bytes. The size of the area is fixed by
freeall (), specifying the size of the area. Note that freeall () releases all
allocated storage in the malloc() area, so in general it is best to call freeall ()
prior to any malloc () orcalloc () calls.

The malloc() area is divided into blocks with the following format:

struct {
char status;

. unsigned size;
char data(l];:
}s;

status is one of: allocated (0xAB), unallocated(0x9D), or end-of-area markef
(0xC6). size is the size of data in bytes. The address of data is returned by malloc,
calloc, and realloc, and used by free.

The following function prints out a map of the memory allocation area.

#define UNALL 0x9D
#define ALLOC OxAB
#define EOA 0xC6

printMap () {
char *cp, *_memory():
struct {
char status:;
unsigned size;
char data(l]:

}:

cp = _memory();
while (cp->status != EOA) {
printf ("%$5u %2salloc bytes at %ul\n",
cp->size,
cp->status == ALLOC ? "" : "un",
cp):
cp = cp->data + cp->size;
}
}

free marks a block as unallocated. malloc searches the allocation area in order
from bottom to top.

10.10

The CSTDIO Library
Thus in the following fragment

fp = malloc(size)';
free (fp);
np = malloc(size);

Jp may notequal np .

In the Large Case memory model, malloc () »calloc (), realloc (), and
free () use the DOS memory management facilities.

Input/Output Library

The VO routines work at different levels. Directory level functions manage the
DOS 2 and later directory structure. File level functions manage the contents of
directories. Stream level function access files as a sequence of bytes. Handle level
function manage files as blocks of data.

Screen level functions simplify the interface between C programs and the IBM-PC
and its clones. Console level functions read and write to the console.

Du I I lE I'.

Directory level functions manage the DOS 2 and later directory structure.
Each of the function works on a directory specified by a pathname.

Function = Effect

chdir() Changes the current working directory _
getdir () Returns the pathname of the current working directory
mkdir () Creates a new directory
rmdir () Deletes an existing directory

File Level Fynctions

File level functions manage the contents of directories. Each function works on a
file identified by a pathname or file-handle.

Function =~ Effect

chmod () Changes the file attributes
filelength() Returns the length of the indicated file

ER IR

-The CSTDIO Library

_isatty () Tests if the file is a character device
locking () Locks parts of a file (MSDOS 3.0 and later)
rename () Changes the name of a file
unlink () Deletes an existing file

Stream I evel Functions

Stream level function access files as a sequence of bytes. They buffer the data read
from and written to disk files in private storage areas. They use a pointer to a FILE
(defined in stdio.h) to associate a stream with the pathname of the file.

Function Effect

fclose() Closes a stream

f£flush () Writes buffered data out to disk file

fgetc () Reads a character from a stream

fgets () Reads a string from a stream

fileno () Returns the file handle of a stream

fopen () Opens a stream

fprintf () Writes formatted string to stream

fputc() Writes a character to a stream

fputs () Writes a string to a stream

fread() Reads a block of data from a stream

freopen () Redirects a FILE pointer

fscanf () Reads formatted data from a stream

fseek () Positions a stream at a specific character

ftell() Returns the position of a stream

fwrite() Writes a block of data to a stream

getc() Reads a character from a stream

getchar() Reads a character from stdin

getw() Reads an int from a stream

printf () Writes formatted string to stdout

putc() Writes a character to a stream

putchar () Writes a character to stdout

puts () Writes a string to a stream

putw () Writes an int to a stream

rewind () Positions a stream to the beginning of the file

scanf () Reads formatted data from stdin

sprintf () Writes formatted string to a string

sscanf () Reads formatted data from a string
“ungetc () Pushes one character back into a stream

10.12

The CSTDIO Library

There are five predefined streams available for reading or writing. They don't
have to be opened before, or closed after use. To refer to them, use the following
predefined FILE pointers (defined in stdio.h):

Stream Device
stdin keyboard, can be redirected
stdout display, can be redirected
stderr display, can not be redirected
stdaux COM1
stdptr LPT1
Handle Level Functions

Handle level functions manage files as blocks of data. They do not buffer or format
the data. They use an int to associate a file handle with a pathname.

Function = Effect

close() Closes afile

creat () Creates and opens a file

dup () Makes another handle for a file
dup2 () Redirects a handle

lseek () Positions a file at a given location
open () Opens a file

read() Reads a block of data from a file
write() Writes a block of data to a file

The maximum number of handles that can be open at one time is either 20, or the
number specified in CONFIG.SYS, whichever is less. See Installing the Software
section of Chapter 2 for details about CONFIG.SYS.

Screen Level Functions

Screen level functions simplify the interface between C programs and the IBM-PC
and its clones. These routines are not in the standard CSTDIO.S library but are
distributed in source form in the file PCIO.A. To use these routines, they must be
assembled and bound in. For example:

A>asm88 b:pcio
A>bind b:blip b:pcio

TN 4N

The CSTDIO Library

See the comments in the IBM Technical Reference Manual for details on the BIOS
interface used by PCIO.

See the LIB88 chapter for details on installing PCIO.O in CSTDIO.S.
Function Effect

scr_aputs () Writes a string to the screen with a specified attribute
scr_ci() Reads a character from the keyboard

scr_co () Writes a character to the display

scr_csts() Tests for the availability of keyboard data
scr_clr() Erases the entire screen

scr_clrl() Erases from the cursor to end-of-line

scr_cls() Erases from the cursor to end-of-screen
scr_cursoff() Turns the cursor off

scr_curson () Turns the cursor on
scr_rowcol () Moves the cursor to the specified row and column

scr_scdn() Scrolls the screen down 1 line, starting at line 3
scr_scrdn() Scrolls an area of the screen down 1 line
scr_scrup () Scrolls an area of the screen up 1 line
scr_scup () Scrolls the screen up 1 line, saving lines 1 and 2
scr_setmode() Change the mode of the CGA
scr_setup () Initialize the screen level functions
scr_sinp () Reads the character at the current cursor location
Console Level Functions
Console level functions read and write to the console. They may be redirected.
Function Effect
ci() Reads a character from the keyboard, no echo
co() Writes a character to the display
csts () Tests for keyboard input

10.14

The CSTDIO Library

Math Library

If any of the transcendental or sqrt() functions are used, include the file math.h or
the equivalent declarations to specify them as returning a double.

Function Effect

abs () Absolute value of int

acos() Arc-cosine of radian argument
asin () Arc-sine of radian argument
atan() Arc-tangent of radian argument
ceil() Returns ceiling of its argument
cos () Cosine of radian argument
exp () Exponential function

fabs () " Absolute value of double
floor () Returns floor of its argument
frexp () Disassembles a double

labs () Absolute value of 1long
ldexp () Assembles a double

log () Log function

modf£ () Decomposes a double

pow () Power function

sin () Sine of radian argument

tan () Tangent of radian argument

math.h includes the statement
extern int errno;

errno is set to a non-zero value when: a floating point stack errors, an argument to
a math routine is out of range, or the result of a math routine would

under/overflow. Error codes and names (defined in math.h) are:

30 ESTK — F/P stack overflow. The most probable cause is calling a
function that returns a double without declaring it as such to the
compiler. After eight calls, the f/p stack will be full.

33 EDOM — invalid argument, i.e., sqrt(-1.0).

34 ERANGE — result would under/overflow, i.e., tan(P1/2.0).

"N 12

The CSTDIO Library
The function rerrno () is called by the floating point routines whenever an error
is detected. rerrno () prints out an appropriate error message and calls exit ().
In order to bypass this effect, install the following function in your program

rerrno() {;} /* null function to suppress printing */

SYSTEM INTERFACE

The System Interface provides access to low-level DOS and BIOS functions.

Function = Effect

chain () Transfers control to another .EXE file, no return
exec () Transfers control to another .EXE file

_doint () Invokes a 8088 interrupt

_os() Invokes simple DOS interrupt (21H)

chain and exec will load and execute an arbitrary program. exec returns control
to your program, chain does not. You specify the complete pathname of the
program (including the .EXE or .COM suffix) and the arguments to the program.
chain and exec are in the EXEC.O file provided on the distribution disks.

exec will return the completion code from the program or -1 if an error occurred

loading the program. Completion codes are set for programs running under DOS
2.0 or later versions of the operating system. If a program exits with

exit (n);

the system ERRORLEVEL will be set to n. A program that returns from the main
function other than by exit () sets ERRORLEVEL to zero. ERRORLEVEL can
be tested with the DOS batch file IF command. See the section under 'BATCH' in

- the DOS manual for details on the IF command.

To invoke a Batch file, or a DOS built-in command, use COMMAND.COM with the
‘/c’ switch as follows:

char shell([128];

getenv ("COMSPEC", shell);
exec (shell, "/cxxx");

10.16

The CSTDIO Library

where xxx is one of the DOS built-in commands ('dir’, ‘copy’, ...) or the naxhe of a
batch file, including the trailing .BAT. :

exec (shell, "/cc:\\autoexec.bat");
Remember that two backslashes are required to insert a single backslash in a string.

Invoking COMMAND.COM with no parameters will start another DOS shell (like
F9 in SEE). To return, enter at the command prompt

exit

C88 normally allocates a stack as large as possible. This is not desirable when using
exec , as little memory may be left for the second program. The -Shhhh option of
the BIND program should be used to reduce the size of the stack and consequently
the size of the program. Remember that the hhhh value of the option is in hex and
that it must be large enough for all parameters and locals active at one time. An
extra 0x100 (256) bytes should also be added for any system calls.

chain loads the new program physically above itself in memory so stack size is
irrelevant. chain is contained in the EXEC.O file on your distribution disk. When
using chain , EXEC.O should be the first parameter to BIND

BIND EXEC progName -oprogName
)

One way to pass data via exec to another program is to pass a pointer to data block.
The driver program for a menu program could be:

struct da‘ta {
int anydata;

char nextMenu[13];
} comArea;

main () {
char parms(10];

strcpy (comArea.nextMenu, "MENUl.EXE");
sprintf(parms, "%u %u", _showds(), &comArea);
while (exec (comArea.nexMenu, parms) > 0)

;

}

«An e~

The CSTDIO Library
Each menu program copies comArea, as follows:

struct data {
int anydata; -

char nextMenu[13];
} comArea;

main (argc, argv).
char *argv[];{
unsigned seq, off; /* driver comArea */

sscanf (argv([1l], "%u %u", &seg, &off);
_lmove(sizeof (struct data),

off, seg, &comArea, _showds()):
/* process menu */
strcpy (comArea.nextMenu, "MENU2.EXE) ;
_lmove(sizeof (struct data),

&comArea, _showds(), off, seg);:
exit (1); /* zero return terminates driver */

}

~ _doint will cause software interrupt inum and may be used to call whatever
routines are available in the particular machine. The values of the registers can be
specified before, and read after, the call to _doint .

_0s provides an elementary interface to the BIOS. inum goes into AH and arg into
DX, and an int 21H is executed.

10.18

The CSTDIO Library

ENVIRONMENT

The function called by the startup code is named main. There is no predefined
prototype for this function. It can be defined with no parameters:

int main(void) {

or with two parameters (refered to here as arge and argv, though any names may be
used, as they are local to the function in which they are declared):

int main(unsigned argc, char * argv[]) {
or with three parameters:

int main(unsigned argc, éhar * argv[], char * envp) {
If they are defined, the paramters of main have the following characteristics:

* argc is non-zero,

e argvlargclisa null.pointer,

« argv([0] through argv[argc-1] contain pointers to strings, which are

portions of the command line arguments used to invoke the program. The

strings consist of character sequences that do not contain whitespace,

« under DOS 3, argv [0] conatins a pointer to the name that was used to
invoke the program. Under DOS 1 and DOS 2, argv[0] isa null pointer,

« envp is a pointer to the DOS environment string. In small-case, envp is
the segment number of the environment string —use _peek () or
_lmove () to access the string. In large-case, envp is a pointer to the
string.

In addition, the following envrionmental variables are available:

« extern unsigned environ contains the paragraph number of the
environment string

e extern unsigned version contains the current DOS version, with

the major release number in the low-order byte, and the minor number in
the high-order byte.

10.18-1

The CSTDIO Library
*+ extern char _osmajor contains the major DOS release number.
e extern char ~_osminor contains the minor DOS release number..

*+ extern uns 1gned _psp contains the paragraph number of the
Program Segment Prefix (PSP).

LIBRARY

Each library function is declared in a header, whose contents are made available via
the #include preprocessing directive. The header declares a set of related
functions, plus any necessary types and additional macros needed to facilitate their
use. All external identifiers declared in any of the headers are reserved, whether or
not the associated header is included. All external identifiers and macro names that
begin with an underscore are also reserved.

The following section describes the headers, and their associated functions, in a
general way. Following that is a description of each function, arranged
alphabetically.

Headers

<assert .h> This header defines the assert macro and refers to another

macro, NDEBUG, which is not defined by <assert .h>. If NDEBUG is defined as a
macro name at the point in the source file where <assert .h>is mcluded the
macro has no replacement text, as in

4 if defined NDEBUG
define assert (expr)
endif

<ctype.h> This header defines several macro implementations of character
testing and mapping functions. The macros defined, which are also available as
functions, are:

isalnum(int) isgraph(int) ispunct(int) isxdigit (int)
isalpha(int) islower(int) isspace(int) tolower (int)
iscntrl(int) isprint (int) isupper(int) toupper (int)
isdigit (int) :

10.18-2

The CSTDIO Library

<math.h> This header declares several mathematical functions and defines three
macros. The functions take double arguments and return double values.

" The macros defined are EDOM, ERANGE, and HUGE_VAL.
The trignometric functions are:

acos () atan () cos () tan ()
asin () atan2 () sin ()

The exponential and logarithmic functiona are:

exp () ldexp () logl0 () frexp ()
log () modf ()
The power functions are: pow () sgrt ()

The miscellaneous functions are

ceil () fabs () floox ()
<setjmp.h> This header declares two functions and one type, for bypassing the
normal function call and return discipline.

The type declared is jmp_buf which is an array type used to restore a calling
environment.

The functions are: longimp () set jmp ()

<stdarg.h> This header declares a type and defines three macros, for
advancing through a list of arguments whose number and types are not known at
compile time. '

The type declared is va_1list which is used to accessing the arguments.

The macros are: va_start () va_arg () va_end ()

10.18-3

The CSTDIO Library

' <stdio.h> This header declares two types, several macros, and many functions
for performing input and output. :

The types are F ILE which is an object descrlbmg a stream, and fpos_t which is an
object descr1b1ng a location within a file.

The macros are:

EOF - SEEK_CUR stdout clearerr
ERR SEEK_END stderr : feof
FALSE SEEK_SET stdaux ferror

NULL stdin stdprn

The file operation functions are:
remove () rename ()
The file access functions are:

fclose () fflush () fopen () freopen ()

The formatted input/output functions are:

fprintf () fscanf () . printf () scanf ()
sprintf () sscanf () .

The character input/output functions are:

fgetc () fgets () fputc () fputs ()
getc () getchar () gets () putc ()
putchar () - puts() ungetc ()

The direct input/output functions are:
fread() fwrite ()
The file positioning functions are:

fseek () ftell() rewind ()

10.18-4

The CSTDIO Library

<stdlib.h> This header declares two types and several functions of general

utility, and defines four macros.
The macros are ERANGE, HUGE_VAL, and RAND_MAX.
The string conversion functions are:

atof () atol () strtod ()
atoi () itoa () ltoa ()

The pseudo-random sequence generator functions are:
rand () srand ()

The memory management functions are:
calloc () free () malloc()

The DOS communication functions are:

abort () exit () getenv ()
atexit ()
The searching and sorting functions are: bsearch ()

The integer arithmetic functions are:

abs () labs ()

10.18-5

strtol ()

realloc () -

system()

gsort ()

The CSTDIO Library

<string.h> This header declares several functions for manipulating character

arrays.
The copying functioﬁs are:
nknuxpyo memcpy () _ memmove ()
strncpy ()
The concatenation functions are:
strcat () sfrncat()
The comparison functions are:
memcmp () strcmp () strncmp ()
The search functions are:

memchr () strcspn () ' strrchr ()

stxrchr () strpbrk () strspn () .

The miscellaneous functions are:

memset () strlen ()

10.18-6

strepy ()

strstr ()
strtok ()

The CSTDIO Library

abort

void abort (void)

abort prints the message
Abnermal program termination
to stderr, and then exits to DOS.

RETURNS: abort does not return to the caller. A return-code of 3 is returned
to DOS. : '

EXAMPLE: FILE *mustopen(char *name, char *mode) {
FILE *fd;

if ((fd = fopen (name, mode)) == NULL) {
printf("can't open %s”, name);
abort ();
}

return f£d;

}

10.19

The CSTDIO Library

‘abs

#include <stdlib.h>

int abs (int n)

abs computes the absolute value of n..

RETURNS: abs returns the int absolute value of its integer argument. There
are no error values.

.SEEALSO: fabs (), labs()
EXAMPLE: int x;

if(x != abs(x))
puts ("negative");

10.20

The CSTDIO Library

access

int access(char *path, int mode)
The access function tests for the existence of the file specified by

path , and whether it can be accessed in mode . The values and
meanings of mode are:

Value Meaning

0 Check for existence only
2 Write access

4 Read access

6 Read and write access

mode 0 and 4 produce the same result, since all DOS files have read
access. mode 2 and 6 produce the same result for the same reason.

RETURNS: access retumns 0 if the file can be accessed with the specified mode .
access teturns -1 if path doesn't exist or can't be accessed in the
specified mode.

EXAMPLE: char comspec[65];

getenv ("COMSPEC", comspec, sizeof (comspec)):
if (access (comspec, 0)) {
puts ("whoops, command.com is missing”);
abort ();
}

10.21

RETURNS:

EXAMPLE:

The CSTDIO Library
acos
$include <math.h>

double acos(double x)

acos computes the arc-cosine of x in the range 0 to T. x must be
between -1.0 and 1.0. :

acos returns the arc-cosine of its argument. acos returns 0.0 and
sets errno to EDOM forx > 1.0orx <-1.0.

#include <math.h>
double x,y:

if(x < =1.0 || x> 1.0) .
printf ("%$g is invalid acos() argumenti\n", X);

else
y = acos(x)i -

10.22

RETURNS:

EXAMPLE:

The CSTDIO Library

asin

#include <math.h>

. double asin(doublé x)

asin computes arc-sin of x in the range -w/2 to ®/2. x mustbe
between 1.0 and -1.0.

asin returns the arc-sine of its'argument. asin returns 0.0 and sets
errno to EDOM forx > 1.0 orx <-1.0.

#include <math.h>
double x,y;

if(x < -1.0 || x> 1.0)
printf("%g is invalid asin() argument\n”, x);
else :

y = asin(x):;

10.22-1

RETURNS:

EXAMPLE:

The CSTDIO Library

assert

#include <assert.h>
void assert (expr)
assert prints a diagnostic message and terminates the program if
expr evaluates to O (FALSE). The message has the following
format:

Assertion (expr) failed: file name ,line number

name is the name of the source file containing the assert macro.
number is the line number of the assert macro in name .

The #1ine preprocessor directive can alter both name and
number.

No action is taken if expr evaluates to non-zero (TRUE).

If the macro name NDEBUG has been defined, the preprocessor
removes all assert macros from the source file.

There is no return value.

#include <assert.h>
#include <math.h>

double tasin(double x) {
assert(x >= -1.0 && x <= 1.0);

return asin(x);

}

10.22-2

RETURNS:

EXAMPLE:

The CSTDIOQ Library

atan — atan2
#include <math.h>
double :atan (double x) -

double atan2 (double x, double y):;

atan computes the arc tangent of x in the range of -7t/2 to 7w/ 2.
atan2 computes the arc tangent of y / x in the range of -x to .

" atan and atan? returns the arc tangent of their argument(s). If both

arguments of atan2 are zero, the function sets errno is EDOM and
returns 0. 0.

/*

** return arc tangent in degrees

*/

#include <math.h>
extern double PI;
double atan_deg (x)
double x;{

return atan(x) * 180 / PI;
}

- 10.22-3

RETURNS:

EXAMPLE:

The CSTDIO Library

atexit
#include <stdlib.h>

int atexit (void (*func) (void)):

atexit registers the function pointed to by func , to be called without

-arguments at normal program termination.

Up to 32 functions may be registered. ,
atexit returns 0 if the function was registered, non-zero otherwise.

#include <stdio.h>

- #include <stdlib.h>

/* send eof message to remote */

© void eop(void) {

fputc (EOF, stdaux):;
}

main () { .
if (atexit (eop)) {
puts ("atexit () error");
abort ();

10.22-4

RETURNS:

. SEE ALSO:

EXAMPLE:

The CSTDIO Library

atof

#include <math.h>
double atof(cp)
char cpl[]:;

atof converts the char array at cp to a double. The first
unrecognized character terminates the conversion. There is no test
for overflow.

whitespace is either a tab or a space. A digit is an ASCII character
'0' through '9". E is either an ASCII 'E' or ‘¢'. {] delimit

sequences that can occur zero or one time. {} delimit sequences that
can OCcur zero or many times.

Yalid character Sequences
{whitespace }[- Wdigit }['."[{digit }(E [- Hdigit }]]

atof returns the floating-point representation of the étring cp,or
0.0 if the string couldn't be converted. There are no error-values.

scanf ()
/* floating-point scanner */
#include <math.h>

double scand() {
char buf[80]:

gets(buf); /* allow line editing */

return atof (buf);
}

1023

RETURNS:

SEE ALSO:
NOTES:

The CSTDIO Library

atoi

int atoi (cp)
char cpl];

atoi converts the char array at cp to an int. The first
unrecognized character terminates the conversion. There is no test
for overflow.

whitespace is either a tab or a space. A digit is an ASCII character
‘0" through '9". [] delimit sequences that can occur zero or one time.
{} delimit sequences that can occur zero or many times.

Valid character Sequence

{whitespace } (-] {digit}

atoi returns the integer representation of the string cp, or 0 if the
string couldn't be converted. There are no error values.

atol (), scanf()

To guard against int overflow, or large unsigned values being
stored as negative integers, use aro! and check that the high-order
word is the same as the high-order bit of the low-order word.

#include <math.h>

atoi (str)

char *str; {
long val, atol():
unsigned sign, extn:;
extern int errno;

extn = (val = atol(str)) >> 16;
sign = val & 0x8000;
i1f((!sign && extn != .0)
Il (sign && extn != -1))
rerrno (erxrno = ERANGE) ;
return val; :

}

10.24

RETURNS:

SEE ALSO:
EXAMPLE:

The CSTDIO Library

. -atol -
#include <math.h>

long atol (cp)
char cpl[]:

atol converts the char array at cp to a 1ong. The first
unrecognized character terminates the conversion. There is no test

- for overflow.

| whitespace is either a tab or a space. A digit is an ASCII character

‘0" through '9". [] delimit sequences that can occur zero or one time.
{} delimit sequences that can occur zero or many times.

Valid character n

{whitespace } [-] {digit}

atol returns the integer representation of the string cp , or OL if the
string couldn't be converted. There are no error values.

scanf ()

See atoi

10.25

RETURNS:

EXAMPLE:

The CSTDIO Library

bsearch
#include <stdlib.h>

void *bsearch(const wvoid *key,
const void *base,
size t nmemb, size t size,
int (*cmp) (void¥*, woid¥*));

bsearch searches an array of nmemb objects, the initial member of
which is pointed to by base, for a member that matches the object
pointed to by base . The size of each object is specified by size .

The array must be in ascending sorted order according to a
comparison function pointed to by cmp , which is called with two
arguments that point to the objects being compared. cmp should
return one of the following values:

Value Meaning

<0 first argument is less than second argument
0 first argument is equal to second argument
>0 first argument is greater than second argument

bsearch returns a pointer to the matching member of the array, or a
NULL pointer if no match is found.

#include <stdlib.h>
#include <string.h>

struct kwords { char *name; short value; }
kwords[] = { ...}:

#define SZKWD sizeof (struct kwords)
#define NKWDS sizeof (kwords)/SZKWD

int cmp(struct kwords *1, struct kwords *r) {
return strcmp (l->name, r->name);

}

#define kwlook(p) \
bsearch((p), kwords, NKWDS, SZKWD, cnp)

10.26

The CSTDIO Library

calloc.

#include <stdlib.h>

char *calloc(unsigned num, unsigned size)

». calloc allocates a block of num * size bytes. Each byte in the block
is set to 0x00.

See the Memory Management discussion of the memory
allocation functions.

RETURNS: calloc returns a pointer to the allocated block, or NULL if it
couldn't allocate the memory.

SEE ALSQO: free(), freeall(), malloc(), realloc()
EXAMPLE: /* set up float array */
float *farray:

if (! (farray = calloc (500, sizeof(float))))
error ("nd room for farray"):;

10.26-1

RETURNS:
NOTE:

EXAMPLE:

The CSTDIO Library

clearerr
#include <stdio.h>
void clearerr (FILE' *gtream); .
clearerr clears the end-of-file and error indicators for stream .
These indicators are cleared only when the file is opened or by an
explicit call to clearerr or rewind .
clearerr retumns no value.
clearerr is a macro.
#include <stdio.h>
int output (FILE *fp, char c) {
if (fputc(c, fp) == EOF && ferror(fp))
fputs ("write error\n", stderr);

clearerr (fp);

}

10.26-2

RETURNS:

SEE ALSO:

EXAMPLE:

The CSTDIO Library
- cell
#include <math.h>
double ceil (x)

double x;

ceil returns a double with the smallest integer value greater than
or equal to x.
ceil returns the ceiling of x. There are no error values.

Note that ceil (-1.5) ==-1.0, not -2.0.
floor(), fmod{()

/* round away from zero */
#include <math.h>

double rndfrO(x)
double x:{

if(x < 0.0)
return -ceil (fabs(x):;
return ceil x;

}

The CSTDIO Library
chain

void chain(filename, commandTail)
char filename[], commandTaill];

chain functions like exec except that control is not returned to the
calling program. chain is in EXEC.O on the distribution disk. It
should be bound in first to save memory since it loads the called
program immediately behind itself. For example:

A>BIND EXEC BLIP -OBLIP

See the discussion in System Interface for more information on
chain.

RETURNS: chain does not return.

SEE ALSO: exec()

EXAMPLE: /* link to assembler
** assemble file myprog.a in current directory
** use large case flag

*/

chain("c:\\c88\\asm88.exe", "myprog b");

10.28

RETURNS:

NOTE:;

EXAMPLE:

The CSTDIO Library

chdir

int chdir(pathname)
char pathname[]:;

chdir changes the current working directory to pathname..
pathname must exist and be a directory.

chdir returns a 0 if successful, or -1 if it fails.

pathname is of the form [drive:] [path). Either, or both
components may be specified.

REMEMBER — the backslash "\" is the escape character in C, If
you are specifing pathname at COMPILE time, use two
backslashes.

chdir("c:\\c88");

Since DOS accepts either a slash or a backslash as a path separator,
the following is equivalent.

chdir("c:/c88");

If the pathname is entered at RUN time, only a single slash or
backslash is needed.

char path([128];

puts ("Enter New Directory ->");
gets (path);
if(strlen(path))
if (chdir(path) != 0)
patherror (path);

The CSTDIO Library

chmod

#include <dos.h>

int chmod(filename, mode)
char filename{]:
int mode;

chmod changes the attributes of filename as specified by mode.
filename must exist.

mode is a value containing a zero or one or both of the constants
CHDIR_READONLY and CHDIR_HIDDEN specified in dos.h. Both
constants can be specified as CHDIR_READONLY+CHDIR HIDDEN.

Value ‘ Writable Hidden
0 yes no
CHDIR READONLY no no
CHDIR_HIDDEN . yes yes
CHDIR_READONLY+ no yes

CHDIR_HIDDEN

RETURNS: chdir returns a 0 if successful, or -1 if filename could not be found.

EXAMPLE: /* program to hide files
** run as hide £fn fn ...
*/

#include <dos.h>
'main(argc, argv)
char *argv[]:{

int 1i;

for(i = 1; i < argc; i++)

chdir(argvii], CHDIR_HIDDEN) ;
}

10.30

SEE ALSO:

NOTES:

EXAMPLE:

The CSTDIO Library

Cl

char ci();

ci reads the next character from the keyboard. If one is not
available, ci waits until one is entered. The character is not echoed
to the display, and is not retained for future access via getc.()

Input to ¢i can be redirected.

There is no check for CTRL-C.

csts(), getchar(), scr_ci()

ci returns a zero as the first character of an extended key sequence,
and returns the extended key code on the next call.

To decode an extended key sequence, use scxr_ci (). It maps the
extended key sequences into char values between 0x80 and 0xFF.
See the CONFIG.C and PCIO.A files for the mapping.

/* get password from kybd */

void getpass (word, len)
char word[]; ’
int len;{

char *cp = word;

while (len-- && (*cp++ = ci()) != '\r')
*cp = '\0"';
}

1NN

The CSTDIO Library

close

int close (handle)
int handle;

close writes any buffered data for the file associated with handle to
that file, and closes the file.

RETURNS: close returns -1 if handle is invalid, not open, or if an error
occurred writing the buffered data to that file.

SEE ALSO: closeall(), creat(), dup(), dup2(), open{()
EXAMPLE: /* copy file to console */

main(argc, argv)
char *argv([];({
int f£d, ‘sz;
char buf[2048], *bp;

if ((fd = open(argv([l], 0)) == 0){
printf("can't open %s”, argvi{l]);
exit (1)
} : .

while(sz = read(fd, buf, sizeof(buf)))
‘for(bp = buf; sz; sz--)

co (*bp++) ;
close(fd);

}

10.32

RETURNS:
SEE ALSO:

EXAMPLE:

The CSTDIO Library

closeall

int closeall()

closeall flushes all bu&em and closes all open files.
closeall returns -1 if an error occurred closing any file.
close(), creat(), dup(), dup2(), open{()
/* fatal error routine */

#include <stdio.h>

‘void fatal (msg, ret)

char *msg; {

fputs (msg, stderr);
closeall ():

exit (ret);

}

10.33

-SEE ALSO:

EXAMPLE:

The CSTDIO Library

co

void co(ch)
char ch;

co writes the character ch on the screen at the current cursor
position. The cursor is advanced to the next position on the screen.

- There is no automatic conversion of the newline character \n into

the \r\n (carriage return, line feed) sequence needed by the screen
driver.

co output can be redirected.

No test for CTRL-C is performed.

putchar (), scr_co()
/* puts() equivalent */

void puts(string)
char *string;{
char ch;

while(ch = *string) {
if(ch == *'\n')
co('\r');
co(*string++);

}

10.34

RETURNS:
SEE ALSO:

EXAMPLE:

The CSTDIO Library

- CcoS

#include <math.h>

double cos (x)
double x;

cos computes the cosine of its radian argument x. The
meaningfulness of the result depends upon the magnitude of the
argument.

cos returns the cosine of x. There are no error values.
acos(), asin(), atan(), sin(), tan{)

/* cos with degree argument */

#include <math.h>

extern double PI;

double dcos(x)
double x; {

return cos((PI + PI) * x);
}

10.35

RETURNS:

SEE ALSO:

NOTE:

EXAMPLE:

The CSTDIO Library.

creat

int creat (name);
char *name;

creat creates the file name. If name doesn't exist, a new file is
created. If the file exists, its contents are deleted.

The file is opened in update mode so that after the file is written, a
program can seek to its begining and read it without closing the file
and reopening it.

creat returns an handle that is used to reference the file in future
operations, or -1 if the file couldn't be opened.
dup (), dup2(), open

creat can open the console ("CON"), the serial port ("AUX"), or
the printer ("PRN"). :

int £d4;

if((fd = creat("c:\\templ”)) == -1)
fatal("can't create templ”, 5):

10.36

SEE ALSO:
NOTES:

EXAMPLE:

The CSTDIO Library

csts

char csts();

csts is similar to ci except that if no character has been typed in, it
will return zero instead of waiting for a character from the
keyboard.

The character is retained and will be returned by the next call to ci.

getchar(), scr_ci(), scr_csts()

csts Teturns a zero as the first character of an extended key
sequence, and returns the extended key code on the next call.

In order to decode an extended key sequence, use scr_csts (). It
maps the extended key sequences into char values between 0x80
and OxFF. See the files CONFIG.C and PCIO.A for the mapping.

csts leaves the character in the input queue. Use ci or getchar to
read it. '

/* empty the input queue

* %

** note - doesn't work for extended key codes
x*x use scr_csts()

*/

void emptyKbd() {

while (csts())
ci();

10.37

The CSTDIO Library

dates

void dates (buf);
char buf[9];

dates formats the string buf with the current date as "mm/dd/ yvy'".

If mm or dd are less than 10, they will be formated with a space
(0x20) as their first character.

RETURNS: dates doesn't return a value.

- SEE ALSO: ctime()

EXAMPLE: /* current date */

char *currdate() {
static char cdate(9];

if (cdate[0] == Q)
dates (cdate) ;

return cdate;

}

10.38

The CSTDIO Library

dup — dup2

int dup(filel)
Aint filel;

int dup2(filel, file2)
int filel, file2;
dup creates a second file handle for the open file filel. Either

handle can be used to operate on the file.

dup2 forces file2 to refer to the same file as filel. If file2 refers
to an open file, that file is closed.

RETURNS: dup returns the new file handle, or -1 if an error occurs.
dup2 returns 0, or -1 if an error occurs. '

SEE ALSO: close(), creat(), open()

EXAMPLE: /* redirected i/o */
#include <stdio.h>

int printer, fnoj;
char pname([32];

sprintf(pname, "c:\\spool\\F$d.pfl", fno++):;
if((printer = creat (pname)) == -1)
fatal("can't allocate printer", 1);
1f (dup2 (printer, stdout))
fatal("can't redirect to printer", 2);
exec (command, parms);
close (printer);

10.39

RETURNS:

SEE ALSO:

EXAMPLE:

The CSTDIO Library

exec

char exec(filespec, commandTail)
char filespec[], commandTailf[];

exec loads and executes an arbitrary program — filespec is the
complete pathname of the program (including the .EXE or .COM-
extension). commandTail contains the arguments to the program.
exec is in the EXEC.O file provided on the distribution disks.

exec returns the completion code from the prograx‘n,' or-1ifan
error occurred loading the program. Completion codes are set for
programs running under DOS 2.0 or greater. If a program exits
with

exit (n);

the system ERRORLEVEL will be set to n. A program that returns
from the main function other than by exit () sets ERRORLEVEL
to zero. ERRORLEVEL can be tested with the DOS batch file IF
command. See the section under 'BATCH' in the DOS manual for
details on the IF command.

chain(), exit ()

/*

** invoke command.com to process batch file
* k

** use /c switch

*/

dobatch (fname)
char fnamel]:;{
char shell([64], parms[128];

if(getenv ("COMSPEC"”, shell) == ()
return 256; /* getenv() error */

strcpy (parms, "/c");

strcat (parms, fname);

return exec(shell, parms):

}

10.40

RETURNS:
SEE ALSO:
NOTE:

EXAMPLE:

The CSTDIO Library

exit

void exit (code)
char code;

exit terminates the calling process and sets the completion code.
main () can also exit with a completion code of zero by "falling”
through the end of the function.

Only the low-order byte of code is used.

exit does not close open files.

exit does not return.

exec (), chain{()

Completion codes are set for programs running under DOS 2.0 or
greater. If a program exits with

exit (n);

the system ERRORLEVEL is setto n. A program that returns
from the main function other than by exit sets ERRORLEVEL to
zero. ERRORLEVEL can be tested with the DOS batch file IF
command. See the section under 'BATCH' in the DOS manual for
details on the IF command. :

/* fatal error handler */
#include <stdio.h>

fatal (msg, level)
char *msg, level;{

fputs (msg, stderr);

exit (level);
}

1041

The CSTDIO Library

exp, exp10

#include <math.h>

double exp (x)
double x;

double explO (x)
double x;
exp returns the exponential function of x; expl0 returns the base
10 exponent.
RETURNS: exp returns e*.
expl0 retumns 10X,

Both retumn a very large value when the result would overflow;
errno is set to ERANGE,

SEE ALSO: 1log(), logl0()
EXAMPLE: #include <math.h>
double x;
X = exp(x);
if (errno = ERANGE)
puts("This isn't a CRAY II\n");

else
printf (“s$f", x);

10.42

The CSTDIO Library
fabs
#include <math. h>
double fabs (x)
double x;
Jfabs computés the absolute value of x .

RETURNS: fabs returns the absolute value of its double argument. There are
no error codes set.

SEE ALSO: abs(), labs()
EXAMPLE: #include <math.h>
double x;

if(x != fabs(x))
puts ("negative");

10.43

RETURNS:

SEE ALSO:

EXAMPLE:

The CSTDIO Library

fclose

#include <stdio.h>

int fclose(fp):
FILE *fp;

fclose writes any buffered data for the file £p to that file and
closes the file

fclose returns 0, or -1 if £fp is not open or if an error occurred
writing the buffered data to that file.

close(), fflush(), fopen(), freopen()

/* file copy */
#include <stdio.h>

static fatal(msg, level)
char *msg, level;({
fputs (msg, stderr):
exit (level);
}

main(argc, argv)

char *argv(];{
char buf([1024};
FILE *ip, *op:

if(argc != 3){
fatal("Usage: copy name name\n", 1):

if (*argv[l] == '-"')
ip = stdin;
else if((ip = fopen(argv{l], "r")) == NULL)

fatal("can't open input file", 2):
if(*argv([2] == '~') °
op = stdout;
else if((ip = fopen(argv([2], "w")) == NULL)
fatal("can't open output file”, 3);
while (fgets(buf, sizeof (buf), ip))
fputs (buf, op):
fclose(op); /* write buffered data out */
}

10.44

The CSTDIO Library

feof

#include <s£dio.h>

int feof (FILE *stream):;

feof tests the end-of-file indicator for stream .

RETURNS: feof returns a non-zero value it the end-of-file indicator is set for
Stream ,

NOTE: feof is a macro.
EXAMPLE: #include <stdio.h>
/* line oriented file copy */

main () {
char buffer([1024];

while (1) {
gets (buffer);
if (feof (stdin))
break;
puts (buffer);
}

10.44-1

The CSTDIO Library

ferror

#include <stdio.h>

-int ferror (FILE *stream);

ferror tests the error indicator for stream .

RETURNS: ferror returns a non-zero value it the error indicator is set for,
stream . '

NOTE: ferror is a macro.

EXAMPLE: #include <stdio.h>
: int output (FILE *fp, char c) {

if (fputc(c, fp) == EOF && ferror(fp)) {
fputs("write error\n", stderr);
clearerr (stream);
}

10.44-2

'The CSTDIO Library

fflush

#include <stdio.h>

int ££lush(fp);
FILE *£p;

fflush writes any buffered data for the file £p fo that file. The file -
remains open. '

RETURNS: fflush returns 0, or -1 if £p is not open or if an error occurred
writing the buffered data to the file.

SEE ALSO: fclose ()

NOTE: Only disk files are buffered, so fflush does dothing on non-disk
files.

EXAMPLE: /* .
** write record to file and
** release to network
*/

#include <stdio.h>
#include <dos.h>

nwrite (buf, size, recno, fp)
char buf(l]; '
int size, recno;
FILE *fp;:{
int fno;

fseek (fp, (long)size * (long)recno, 0);
locking(fno = fileno(fp), LOCK, size):;.
fwrite(buf, size, 1, £p):

fflush(£fp);

locking (fno, UNLCK, size);

}

10.45

RETURNS:

SEE ALSO:

EXAMPLE:

The CSTDIO Library

fgetc
#include <stdio.h>

int fgetc(£fp)
FILE *fp;

Jgetc returns the next character from the stream Jfp. fp must be
open.

fgetc returns the next character from the stream, or EOF on erTor
or end-of-file.

getc(), scanf(), fread()

/*
** fgets
*/

#include <stdio.h>

char * fgets (buf, n, fp)
char buf[]; ’
int n;
FILE *fp;({

int i, ch;

n--; :
for(i = 0; i < n && ((ch = fgetc(fp)) != EOF)
&& (ch != "\r' || ch != "\n'); i++)
buf(i] = ch;
if(i != n)
buf(i++] = '\n';
buf[i] = '\0';
while(ch == '\r' || ch == '\n')

ch = fgetc(fp):
return buf;
L

10.46

RETURNS:
SEE ALSO:
NOTE:

EXAMPLE;:

The CSTDIO Library

fgets
#include <stdio.h>
char *fgets(buf, len, £p)
char buf[]; ’

int len;
FILE *fp;

fgets reads the next line, but not more than len - 1 characters from
the file fp into buf. The last character read into buf is followed by
a'\o’'.
Jfgets returns buf, or NULL on end of file or an error.
fscanf (), fread()
fgets returns the CR character.
/ *
** copy file to console
*/
#include <stdio.h>
void f_to_con(fp)
FILE *fp;{(
char buf(81];
while (fgets (buf, 81, fp))

puts (buf) ;
}

10.47

RETURNS:

" SEE ALSO:

EXAMPLE:

The CSTDIO Library

filelength

long filelength (handle)
int handle;

filelength accesses the size of the open file associated with handle.

filelength retumns the actual length of the file in bytes, or-1L on
erTor.

fileno ()

/*
** reprocess additions
*/

process (fh)

int £h;{
long restart, filelength();

restart = filelength(fh);
doAdditions (fh);
lseek(ﬁh, restart, 0);
reprocess (fh) ;

1

10.48

The CSTDIO Library

fileno
#include <stdio.h>
int fileno(fp)

FILE *£p;

fileno returns the handle associated with the file fp. If more than
one handle is linked to the file fileno returns the handle assigned
when the file was opened. '

RETURNS: fileno returns the file handle. The value is undefined if there is no
file associated with fp.

SEE ALSO: filelength(), fopen(), freopen /()
EXAMPLE: /~*

** Find length of a stream

/*

#include <stdio.h>

long flen(£fp)

FILE *fp;{ _

long filelength():;

return filelength(fileno(fp));
}

10.49

The CSTDIO Library

floor

#inciude <math.h>

double floor (x)
double x;

dval = floor(x);
floor returns a double with the largest integer value less than or
equal to x. '
RETURNS: floor returns the floor of x. There are no error values.

Not; that £loor(-1.5) =-2.0, not -1.0.

SEE ALSO: ceil()

EXAMPLE: /* round towards zero. cf. ceil() */
#include <math.h>

double rndtoOl(x)
double x:{

if(x < 0.0)

return ~floor(fabs(x));
return floor(x);
} .

10.50

RETURNS:

NOTES:

EXAMPLE:

The CSTDIO Library

fopen
#include <stdio.h>

FILE *fopen(nama, method)
char *name, *method;)

fopen opens the file name .

method is a string having one of the following values:

Method Meaning

open for reading (file must exist). ’
open for writing (same as creat).

open for append — open for writing at end of file, or
create for writing.

Sfopen returns a FILE* that identifies the file in future file
operations, or returns NULL if the file couldn't be opened.

Even though fopen can open the console (" CON"); the serial port
("AUX"), or the printer ("PRN"), you save file handles by using the
standard files (stdin, stdout, ...).

/*
** jnitialize (possibly) empty file
*/

#include <stdio.h>
FILE *finit (name) {

char name(];{
long ftell():

FILE *fp;

if((fp = fopen(name, "a")) == 0)
error("can't open %s", name);

if (ftell (fp) == OL)

fileInit (fp):
return fp;

}

10.51

RETURNS:

EXAMPLE:

The CSTDIO Library

FP_OFF, FP_SEG
(Large Case Optlon)

#include <dos.h>

unsigned FP_OFF (ptx)
char *ptr;

unsigned FP_SEG (ptr)

chaxr *ptr;

FP.OFF and FP_SEG are macros that decompose an 8088 physical
address (SEG:OFF) into its constituent parts.

FP_OFF and FP_SEG work only with Large Case programs.

FP_OFF returns the offset component of the 8088 physical address;
FP_SEG returns the segment component.

/*
** Large (>64K) array addressing
* J

** base address assumed to be SEG:0
*/

#include <dos.h>

char *larray(ptr, off)

char *ptr; /* base adr of array */
long off;{ /* offset into array */
long addr’;
addr = (long) (FP_SEG(ptr)) << 16;
addr |= (off & OXFFFFOL) << 12;

dddr |= off & OxFL;
return addr;
}

10.52

. The CSTDIO Library
fprintf

#include <stdio.h> '

int fprintf(fp, fes, [, arg] ...)
FILE *fp;

char fecsl[]:;

Jpringf formats the data in fcs and [arg] to the file fp, which must
be open.

The format control string, fcs, can contain both ordinary characters
which are copied unchanged to the output file, and conversion
control strings which describe how each arg is to be formatted. fes
is specified in printf.

RETURNS: fprint returns -1 on error.

NOTE: ~ The maximum length of fprintf outi)ut is 256 bytes. If you need
more use sprintf followed by fputs ().

EXAMPLE: /* -
** write <name, index, val> in text format

*/
#include <stdio.h>

Twrite(fp, n, i, v)

FILE *fp;

char n(]:

double v7{
return fprintf (fp,"\"%s\",%d,%f\n", n, i, v):
}

10.53

RETURNS:
SEE ALSO:

EXAMPLE:

The CSTDIO Library

~ fputc
f#include <stdio.h>
int fputc(ch, £p)

char ch;
FILE *£fp;

fputc writes ch to the filefp . fp must be open.

fputc retumns ch, or -1 on error.

printf (), putc(), fwrite()
/*

% ux puts

*/ '

#include <stdio.h>

static int DOSputc(ch, fp)
char ch;
FILE *fp;{
if(ch == '\n"')
fputc('\r', £p):
return fputc(ch, f£fp);
}

uputs (str)
char *str;{
char ch;

while (ch = *str++)
1£(DOSputc (ch, stdout)
return EOF;

== EOF)

return DOSputc('\n', stdout);

)

10.54

The CSTDIO Library

fputs
#include <stdio.h>

int fputs (buf, f£fp);
char buf([]; ‘
FILE *fp;

Jputs copies the string buf to the file fp.
RETURNS: fputs returns a -1 on error.
SEE ALSO: fprintf(), fwrite()

NOTE: Jputs converts linefeed ('\n") to carriage return - linefeed
(\r\n’). Output will stop if CTRL-S is entered, and resume when
any other key is pressed. Each output will check for a CTRL-C
entry, and terminate the program if one is encountered.

EXAMPLE: /* file copy */
#include <stdio.h>

main(argc, argv)

char *argv{];({
char buf{1024);
FILE *ip, *op;

if (*argv[l] == '-')
ip = stdin:;

else if((ip = fopen(argv[l], "r")) == NULL)
exit (1) ;

if (*argv([2] == '-")
op = stdout;

else if((op = fopen(argv(2], "w")) == NULL)
exit (2);

while (fgets(buf, sizeof (buf), ip))
fputs (buf, op); v
fclose(op); /* write buffered data out */

}

10.55

RETURNS:

SEE ALSO:

EXAMPLE:

The CSTDIO Library

frand

double frand():

frand computes the next pseudo-random number.

frand retumns the next pseudo-random number in the range from
0.0 to 1.0. There are no error values.

rand (), srand()
/*
** draw element from the set [min, max]

*/

draw{(min, max)
int min, max;{
double ceil (), frand():

rethrn min + ceil((max -~ min) * frand()):;

}

10.56

RETURNS:

SEE ALSO:

The CSTDIO Library

fread

#include <stdio.h>

unsigned fread(buf, size, nitems, fp)

char buf[];

unsigned size, nitems;

FILE *fp;

Jread reads into buf, nitems of data of size size, from the file fp .
fread returns the number of items actually read (which may be less

than nitems if end-of-file is encountered), or 0 if an error
occurred.

fgetc(), fgets(), scanf()

10.57

The CSTDIO Library
free, freeall

void free (op)
char *op;

void freeall (stackSize)

unsigned stackSize;

free marks the block at op as unallocated.

freeall reserves stack bytes for the stack expansion area, and
initializes the memory allocation area.

See the Memory Management section for a discussion of the
memory allocation area.

RETURNS: Neither free orfreall return a value. No error codes are set.
NOTE: freeall releases any storage allocated by malloc, You can reset

the memory allocation area by calling freeall. Otherwise, call
freeall prior to any calls to malloc,

SEE ALSO: calloc(), malloc{(), realloc()

 EXAMPLE: /*
** reserve 20k for stack expansion

*/
freeall (20 * 102&);

/*
** process a line
*/

if((cp = malloc (MAXLINE)) && process(cp))
free(cp):

1N 8

RETURNS:

EXAMPLE:

The CSTDIO Library

freopen

#include <stdio>
FILE *freopen(filename, method, fp)

char *filenama, *method;
FILE *fp;

Jfreopen closes the file associated with fp and redirects to the file
name . It is normally used to redirect stdin, stdout, stderr,
stdaux, and stdpzrn. '

method is a char string having one of the following values:

Method Meaning

"r open for reading (file must exist).

"w" open for writing (same as creat).

"a" open for append — open for wntmg at end of file, or
create for writing.

freopen returns an FILE* that identifies the file in future file
operations, or returns NULL if the file can't be redirected.

/*
** redirected i/o
*/

#include <stdio.h>

FILE *prn, *freopen():
char pname([32];
int fno;

sprintf (pname, "c:\\spool\\F%d.pfl", fno++);

if((prn = freopen(pname, "w", stdout)) == NULL)
fatal ("can't redirect to printer", 2);

exec (command, parms);

fclose(prnt) ;

10.59

RETURNS:

SEE ALSO:

EXAMPLE:

The CSTDIO Library
frexp

#includa <math.h>

double frexp (value, eptr)
double value;
int *eptr;

frexp disassembles value into a fraction (< 1.0), and its base 2
‘exponent.

Jfrexp returns thé fractional part of value as a double, and the base
2 exponent of value as an integer at *eptr.

The value 0.0 returns both 0.0 as the fraction and 0 as the exponent.

There are no error codes set.
ldexp (), modf()

/ *

** multiply by power of 2

* %

#include <math.h>

double mpyPow2 (num, pwr)

double num;
int pwx;{
int exp:

num = frexp(num, &exp);

return ldexp(num, exp + pwr);
}

1N AN

.

RETURNS:

SEE ALSO:

EXAMPLE:

' The CSTDIO Library

fscanf
ffinclude <stdio.h>
int fscanf(fp, fes [, ptr] ...)
FILE *fp; :

char fcs[]:

Jfscanf reads from the file fp, assembles data under the specification
of fcs, and stores the data at *prr.

The format control string, fcs, is described in scanf.

fscanf returns the number of fields scanned and aésigned. A return
of zero means no fields were converted.

Sfscanf returns EOF for error or end-of-file.
scanf (), sscanf()

/* _
** read next. numeric field from fp
* %

** if there is any non-numeric data in the
** stream, discard it
*/

#include <stdio.h>
FILE *fp;
int n;

while(fscanf (fp, "%d", &n) == 0)
fgetc (fp);

10.61

RETURNS:
SEE ALSO:

EXAMPLE:

The CSTDIO Library

fseek

#include <stdio.h>

long fseek (fp, offset, mode)
FILE *fp;

long offset;

int mode;

fseek sets the location of the next input or.output operation on the
file fp as follows:

offset bytes from the begining of the file

offset bytes from the current location
offset bytes from the end of the file

N —-O

offset may be either positive or negative.

If the resulting location is before the beginning of the file, it is set to
thg beginning; if it is after the end of the file, it is set to the end.

fseek returns the current location, or -1L if there was an error.

!

ftell(), lseek(), rewind{()

/*
** rewind to begining of file
x/

#include <stdio .h>

long rewind(£fp)
FILE *fp; {

return fseek(fp, 0L, 0):;
}

10 A7

The CSTDIO Library

ftell

#include <stdio.h>

long ftell (fp)
FILE *fp;

frell gets the current location of the file fp as the relative byte
offset from the beginning of the file.

RETURNS: frell returns the current location, or -1L if there was an error.
SEE ALSO: fseek(), lseek(), rewind ()

EXAMPLE: /*

** process all records in file
*/

#include <stdio.h>

process (fp, fun, siz)

FILE *fp;

int (*fun) ():

int siz:{ ‘
long eof, filelength(), fseek(), ftell();:
char *buf = malloc(siz):

eof = filelength(fileno (fp)):;

fseek (fp, OL, 0); ‘

while (ftell (fp) < eof) {
fread(buf, 1, siz, fp);
(*fun) (buf):;
}

free (buf);

y

10.63

RETURNS:

SEE ALSO:

EXAMPLE:

The CSTDIO Library

fwrite

 f#include <stdio.h>

int fwrite(buf, size, nitems, f£fp);
char buf;

unsigned size, nitems;

FILE £p;

fwrite appénds from buf, at most nitems of data of length size, to
the file fp.

fwrite returns the number of items actually wﬁtten, which may be
less than nitems if an error occured.

fputc (), fputs(), printf ()

/*
** write Large Case huge array to stream
** return: 0 == 0K, otherwise error

*/

hwrite(at, size, £p)

char *at; /* array */
long size; /* size in bytes */
FILE *fp; /* stream */

{int rc; /* return code */

char *larray(); ./* see FP_OFF */

while(size > OxFFFF) {
if (fwrite(at, 1, OXFFFF, fp) != OxFFFF)
return 1;
at = larray(at, OxFFFFL);
size -= OxFFFF;
: }
1f (size &&
fwrite(at, 1, (int)size, fp) != (int)size))
return 1;
return 0;
}

10.64

e

RETURNS:

SEE ALSO:
NOTE:

EXAMPLE:

The CSTDIO Library

getc, getchar
#include <stdio.h>

int getc(£p)
FILE *£fp;

int getchar():

getc reads the next character from the file fp. fp must be open.
getchar reads the next character from stdin.

getc and getchar return the next character, or EOF on error or

end-of-file. getchar returns EOF when a CTRL-Z character is
read.

~scanf(), fread()

getc and getchar are functions rather than a macros.

getchar can hangup reading redirected input under DOS 2.X and
higher. Use getc (stdin) if the input could be redirected.

/*
** read integer from keyboard
W e

** leave terminating char

*/
#include <stdio.h>

int geti(){
char digits[128], *dp = digits;

while (isdigit (*dp++ = getc(stdin)))
ungetc (* (~-dp), stdin);
*dp = '\0';

return atoi(digits);
}

10.65

RETURNS:

EXAMPLE:

The CSTDIO Library
getdir

char *getdir(drive, pathBuffer)
char drive, pathBuffer[128]:;

getdir writes the full pathname of the current directory into
pathBuffer.

drive is the drive number: 0 = default drive, 1 = A;,
pathBuffer should be a 128 character array.

getdir returns the address of pathBuffer, or -1 on error.

/* .
** display prompt as [hh:mm]path>
x/

prompt () {
char pbuf(137]:;

strcpy (pbuf, "\n(["):
times (&pbuf(2]);
pbuf[7] = ')"'; -
getdir (0, &pbufl[8]); .
strcat (pbuf, ">");
puts (pbuf) ;

}

1N KK

RETURNS:

NOTE:

SEE ALSO:
EXAMPLE:

The CSTDIQ Library
getenv

char *getenv(key, buffer)

char ‘*key, buffer[80];

getenv searches the DOS environment for an entry of the form

key =value

and copies value into buffer. value is a string (terminates with
\0%).

getenv returns the address of buffer, or NULL if key was not
found.

key is terminated by the '=' character, so
PATH=C:\

and
PATH =C:\

are different environment entries.

putenv ()

/ *

:; get path of COMMAND ..COM

#define COMSPEC (buf) getenv ("COMSPEC" s buf)

10.67

The CSTDIO Library

gets

char *gets (buf)
char buf[];

gets reads a line-edited string from the console (s¢din) into buf.
During input, <ESC> means backup and start over, <BACKSPACE>
means delete the previous character and <RETURN> means end of
string. <RETURN> is replaced in buf by a\0'.

RETURNS: gers returns the address of buf, or NULL on end of file or error.
SEE ALSO: fscanf(), fread()
NOTE: . gets doesn't return the CR character.
EXAMPLE: /= | _
:*/* copy a file from stdin to stdout

cat () {
buf(1024];

while (gets (buf))

puts (buf) ;
}

10 AR

The CSTDIO Library

getw
#include <stdio.h>
int getw(£fp)
FILE *£fp;
getw returns the next int from the file fp. fp must be open.

RETURNS: getw returns the next integer value, or EOF if an error or end of
file was sensed.

NOTE: There is no way to distinguish the integer value -1 from EOF.
SEE ALSO: scanf(), read()
EXAMPLE: /+

** Sum numbers in file

*/

#include <stdio.h>

long sum(£fp)

FILE *fp;{
long value = 0;
int word;
while((word = getw(fp)) != -1)

value += word;
return value;

}

10.69

RETURNS:

EXAMPLE:

The CSTDIO Library

index

char *index(sxrc, ch)
char sxc[], ch;

index finds the first occurence of ch in src.

index works on a null-terminated string. There is no test for
overflow.

index returns a pointer to the first occurence of ch in src, or 0 if
ch wasn't found.

/* :

** dispatch on key pressed

Yk

** use index rather than switch statement
*/

static char keys[] = "\003 ... ";
extern int ctl c(), ... ;
static int (*fun) () [] = {ctl_c, ... }:

dispatch(ch)
char ch{]:{
char *kp;
extern char scr_attr;

if(kp = index(keys, ch([0]))
return (*fun) () [(kp - keys}:

scr_aputs{(ch, scr_attr):

return 0;

}

1070

RETURNS:

NOTE:

EXAMPLE:

The CSTDIO Library

isalnum

int isalnum(c);

‘char ¢;

isalnum determines if ¢ is a letter or a digit (A-Z, a-z, 0-9).

isalnum returns TRUE (non-zero) if c is a letter or a digit, FALSE
(zero) otherwise.

isalnum is a function rather than the usual macro implementation.

/* .
** is (c) alpha or numeric?
*/

isalnum(c)
char c;{ .
return (c >= 'A' && ¢c <= 'Z!
(c >= 'a' && c <= 'z
(c >= '0' & c <= '9!

I
I

— o

.
r

10.71

RETURNS:

NOTE:

EXAMPLE:

The CSTDIO Library
isalpha

int isalpha(c);
char c¢;

is&lpha determines if ¢ is a letter (A-Z, a-z).

isalph;a returns TRUE (non-zero) ifc is a letter, FALSE (zero)
otherwise.

isalpha is a function rather than the usual macro implementation.

/*
** is (c) alpha?
*/ .

isalpha(c)
char c;{
return {(c >= 'A' && c <= 'Z') ||
(c >= 'a' && c <= 'z2'");

}

1n 71

RETURNS:

NOTE:
EXAMPLE:

"I'he CSTDIO Library
isascii

int isascii(c);
char c;

isascii if ¢ is an ASCII character (0x00-0x7F).

isascii returns TRUE (non-zero) if ¢ is less than 0x80, FALSE
(zero) otherwise.

isascii is a function rather than the usual macro implementation.

/* :

** is (c¢) an ascii char?.

* / '

isascii(c)

char c;{
return (c & 0x80) == 0Q;
}

10.73

The CSTDIO Library

isatty

int isatty(handle)
int handle;

isarty determines if the file handle refers to a character device —
console, printer, or serial port .

RETURNS: isatty returns TRUE (non-zero) if the handle refers to a character
, device, FALSE (zero) otherwise.

EXAMPLE: /*
** jis (handle) a character device?
*/)

#define ISDEV 0x0080
#define CHARDEV 0x8000

isatty(handle)
unsigned handle; {
' extern unsigned _rax, _rbx, _rdx;

_rax = 0x4400; /* get device info */
_rbx = handle;

_doint (0x21) ;

return (_rdx & ISDEV) && (_rdx & CHARDEV);
} :

1074

RETURNS:

NOTE:

EXAMPLE:

The CSTDIO Library

iscntrl

int iscntrl(c)
char c;
iscntrl determines if ¢ is a control character (0x00-0x1F, 0x7F).

iscntrl returns TRUE (non-zero) if ¢ is 0x7F or less than 0x20
(space), FALSE (zero) otherwise.

iscntrl is a function rather than the usual macro implementation.

/%
** is (c) a control char?
*/
iscntrl(c)
char c;{

return (c == 0x7F) ||

(c < 0x20):
}

10.75

RETURNS:

‘NOTE:
EXAMPLE:

The CSTDIO Library
Isdigit
int isdigit(c);
char ¢;

isdigit determines if ¢ is a digit (0-9).

isdigit returns TRUE (non-zero) if ¢ is a digit, FALSE (zero)
otherwise. :

isdigit is a function rather than the usual macro implementation.

/*
** is (c) numeric?

*/

isdigit (c)

char c;{
return (¢ >= '0' && c <= '9');
}

1N 7L

RETURNS:

NOTE:

EXAMPLE:

The CSTDIO Library

islower

int islower(c):
char ¢;

islower determines if c is a lower-case letter (a-z).

islower returns TRUE (non-zero) if ¢ is a lower-case letter,
FALSE (zero) otherwise.

islower is a function rather than the usual macro implementation.

/*
** is (c) lower-case?
* / '
islower(c)
char c;{
return (¢ >= 'a' §& c <= 'z'); -
} .

10.77

RETURNS:

NOTE:

EXAMPLE:

The CSTDIO Library
isprint

int isprint(c):;
char c;

i'sprint determines if ¢ is a printable character (0x20-0x7E).

isprint returns TRUE (non-zero) if ¢ is a printable character,
0x20 (space) through 0x7E ('~"), FALSE (zero) otherwise.

isprint is a function rather than the usual macro implementation.

/*
** is. (c) printable?
*/

#define SPACE 0x20
isprint (c)
char c¢;{

return (¢ >= SPACE && Cc <= '~');
}

1N IR

RETURNS:

NOTE:

The CSTDIO Library

ispunct

int ispunct(c);
char c;

ispunct determines if ¢ is neither a control nor an alphanumeric
character. :

ispunct returns TRUE (non-zero) if
! (isalnum(c) || iscntrl(c))
FALSE (zero) otherwise.

ispunct is a function rather than the usual macro implementation.

10.79

RETURNS:

NOTE:

EXAMPLE:

The CSTDIO Library

isspace

int isspace(c):;
char c¢;

isspace determines if ¢ is a whitespace character (0x09-0x0D,
0x20).

isspace returns TRUE (non-zéro) if ¢ isa 0x20 (space), '\t
(tab), '\r' (carriage return), '\n"' (linefeed), or '\ £’
(formfeed), FALSE (zero) otherwise.

-isspace is a function rather than the usual macro implementation.

/*
** is (c) white-space?
*/
isspace(c)
char c;{)
static char wspacel[] = "\t\r\n\f\040";

return index(wspace, c) != 0;

}

10.80

RETURNS:

NOTE:

EXAMPLE:

The CSTDIO Library
isupper

int isuppex(c):
char ¢;

isupper determines if ¢ is an upper-case letter (A-Z).

isupper returns TRUE (non-zero) if ¢ is an upper-case letter,
FALSE (zero) otherwise.

isupper is a function rather than the usual macro implementation.

/*

**% is (c) upper-case?

*/

isupper(c)

char c;{
return (¢ >= 'A' && c <= 'Z');
}

10.81

The CSTDIO Library
isxdigit
#include <ctype.h>

int isxdigit(int c):

isxdigit tests whether ¢ is a valid hexadecimal digit [0-9,a-f,A-F].

RETURNS: isxdigit returns 1 ifc isa valid hexadecimal digit, O otherwise.

EXAMPLE: #include <ctype.h>

long gethex(char **p) {
long val = 0;
char c;

while (isxdigit (**p)) |
val <<= 4;
if (isdigit(c = * (*p++)))

val |= ¢ - '0';
else
val |= toupper(c) - ('A'

}

return val;

3

10.82

- 10)

RETURNS:

EXAMPLE:

The CSTDIO Library

Itoa
#include <stdlib.h>
char *itoa(int wval, char str]|]‘ , int rad):
itoa converts val into a null terminated string at str . rad specifies
the base of val ; it must be in the range 2 — 36.

If rad is 10 and val is negative, the first character of str will be the
minus sign, -\

itoa returns a pointer to sir.

$include <stdlib.h>
#include <stdio.h>

/* put a decimal number to stdout */

putn (int dig) {
char buffer[256];

return fputs(itoa(dig, buffer, 10), stdout) ;
}

10.82-1

The CSTDIO Library
labs

long labs (n)

long n;

labs computes the absolute value of n.
RETURNS: labs returns a long absolute value. There are no error codes set.
SEE ALSO: abs (), fabs()
EXAMPLE: /*

** long absolute value

*/

long labs (val)
long val; {

return val < 0 ? - val : val;

}

10.82-2

The CSTDIO Library

Idexp
#include <math.h>
double ldexp(value, exp)
double value;
int exp;
ldexp computes value * 2¢*P,

RETURNS: Idexp builds the floating-point representation. There is no test for -
overflow. :

SEE ALSO: frexp(), modf()
EXAMPLE: See frexp

10.83

RETURNS:

SEE ALSO:
NOTE:

EXAMPLE:

The CSTDIO Library

locking

#includa <dos.h>

int locking(handle, mode, count)
int handla, modae, count;

locking locks orunlocks count bytes of the file identified by handle
starting at its current position. Locked areas of a file cannot be read
or written by other processes.

mode specifies the action to be performed. The constants defined
in <dos.h> are:

Constant Action

LOCK Lock the specified bytes. If the bytes cannot be
locked, returnan error.

UNLCK Unlock the specified bytes. The bytes must be
locked .

More than one area of a file can be locked, but the areas must not
overlap.

Only one area can be unlocked per call. If two contiguous areas of
the file are locked, each area must be unlocked separately.

All locks should be removed before closing the file or exiting the

‘program.

locking returns O if successful, -1L on error.

open ()
locking works only with DOS 3.0 and later.
See fflush

10.84

RETURNS:

SEE ALSO:
EXAMPLE:

The CSTDIO Library

log, log10
#include <math.h>

double log(x)
double x;

double loglO (x)
double x;

log computes the natural logarithm of x; logl 0 computes the base
10 logarithm.

log and logl0 return the indicated logarithms. They both return
0.0 when x is zero or negative and errno is set to EDOM.

exp(), pow()

/* '

** n-th root

*/

#include <math.h>
double root(n, x)
int n;

double x; {

-return exp(log(x) / (double)n):
}

10.85

RETURNS:

NOTE:

The CSTDIO Library

longjmp
#include <setjmp.h>

void longjmp(env, val);
jmp_buf env;
int wval;

Jmp_buf is defined in <setjmp.h> . It creates an environment used by
setjmp for future use by longjmp . longjmp restores the
environment from env and returns val . val cannot be zero.

longjmp does not return.

env can be specified as zero for compatibility with previous releases.
There can be only one "zero" env active at a time.

If the environment stored in env points into an overlay area, then the
overlay that called setjmp must be resident when longjmp is called—
if another overlay is resident, then strange things will happen. It is
best to call setjmp from the root.

1N RA

RETURNS:
SEE ALSO:

EXAMPLE:

The CSTDIO Library

Iseek

long lseek (handle, offset, mode)
int handle, mode;

.long offset;:

Iseek sets the location of the next input or output operation on the
file handle as follows:

mode : Location.
0 offset bytes from the béginning of the file
1 offset bytes from the current location -

2 offset bytes from the end of the file
offset may be either positive or negative. |

If the resulting location is before the beginning of the file, it is set to
the beginning; if it is after the end of the file, it is set to the end.

Iseek returns the current location, or -1L if there was an error.
fseek (), ftell()

/*
** ansi fseek()
* %

** returns 0 == OK
*/

#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname; {
long ret;

ret = lseek(fileno(stream), offset,-ptrnamé);
return ret != offset;

}

10.87

The CSTDIO Library

Itoa
#include <stdlib.h>
char *ltoa(long wval, char str[], int rad):;
Itoa converts val into a null'terminated string at szr . rad specifies
the base of val ; it must be in the range 2 — 36.

If rad is 10 and val is negative, the first character of str will be the
minus sign, -

RETURNS: ltoa returns a pointer'to str.

EXAMPLE: #include <stdlib.h>
#include <stdio.h>

/* put a decimal number to stdout */

putn(long dig) {
char buffer[256];

return fputs(ltoa(dig, buffer, 10), stdout) ;
}

10.88

The CSTDIO Library
- malloc

#include <stdlib.h>

char *malloc(size_t size)

malloc allocates a block of size bytes.
See the discussion in Memory Management.

RETURNS: malloc returns a pointer to the block, or NULL if it couldn't allocate
the memory.

SEE ALSO: calloc(), free(), freeall(), realloc()

EXAMPLE: /* ‘
** strdup - copy a string
*/

char *strdup(char *str) ({
char *sav, *malloc();

if (sav = malloc(strlen(str) + 1))
strcpy (sav, str);
return savy;

}

10.88-1

The CSTDIO Library

memccpy

#iinclude <string.h>

void *memccpy(void *dst, wvoid *src,
' char ¢, size_t n);

memccpy copies 0 or more bytes of src to dst, copying up to and -
including the first occurrence of ¢ or until » bytes have been
copied, whichever occurs first.

RETURNS: memccpy retumns a pointer to the location of ¢ in dst. Otherwise it
returns NULL if ¢ was not copied.

EXAMPLE: #include <string.h>
#include <stddef.h>
#include <stdio.h>

char *memccpy (char *dst, char *src, char c,
size €t n); {

while (n--)
if ((*dst++ = *src++) == ¢)
return dst - 1;
return NULL;
}

10.88-2

RETURNS:

EXAMPLE:

The CSTDIO Library

memchr

#include <string.h>

.void *memchr(void *str, chaxr ¢, size_ t n);

memchr locates the first occurrence of ¢ in the initial » characters
of the object pointed to by szr. :

memchr returns a pointer to ¢, or NULL if ¢ doesn't occur in the
object. '

#include <string.h>
#include <stdio.h>
#include <stddef.h>

/* look for a string */
char *memchr (char *str, char ¢, size t n) {
while (n--)
if (*str++ == c)
return str - 1;

return NULL;
}

10.88-3

The CSTDIO Library

memcmp

#include <string.h>

int memcmp (void *sl, void *s2, size t n);
memcmp compares the initial n characters of the object pointed to
by 52 to the the object pointed to by sl .

RETURNS: memcmp returns a value indicating the lexicographical relationship
of s1 tos2 asfollows:

Vglug Meaning

<0 sl islessthans2.
0 sl isidentical to s2 .
>0 sl is greater than s2 .

EXAMPLE: #include <stddef.h>
$include <string.h>

/* compare two objects */.
int memcmp (char *sl, char *s2, size t n) {
while (n--)
if(*sl++ 1= *s2++)
return *(sl - 1) = *(s2 - 1):

return 0;

}

10.88-4

RETURNS:

EXAMPLE:

The CSTDIO Library

memcpy
ffinclude <string.h> (
void *memcpy (void *dst, void *src,
size t n);
memcpj copies n bytes of src to dst .
There is no test for overlap between src and dst .
memcpy returns the value of dst .

#include <string .h>
#include. <stddef.h>

char *memcpy (char *dst, char *src, size_t n)
char *beg = dst;

while (n--)
*dst++ = *srct+;
return beg;

}

10.88-5

RETURNS:

EXAMPLE:

The CSTDIO Library

memicmp
$include <string.h>
int memicmp (void *sl, void *s2, size t n);
memicmp compares the initial n characters of the object pointed to
by 52 to the the object pointed to by s/ , without regard to the case
of the characters.

memicmp returns a value indicating the case insensitive
lexicographical relationship of s to s2 as follows:

Value Meaning

<0 sl islessthans2 .
0 s] is identical to 52 .
>0 sl is greater than s2 .

#include <stddef.h>
#include <string.h>
#include <ctype.h>
#define TU(c) toupper(c)

/* . compare two objects */

int memicmp (char *sl, char *s2, size_t n) {
int ci, c2;

while (n—-)
if((cl = TU(*sl++)) = (c2 = TU(*s2++)))
return cl - ¢2; '
return 0;

}

10.88-6

RETURNS:

EXAMPLE:

The CSTDIO Library

memmove

#include <string.h>

" void *memmove (void *dst, void *src,

size t n);

memmove copies n characters from src to dst .
memmove correctly copies overlapping objects.
memmove returns dst .

#include <string.h>
#include <stddef.h>

char *memmove (char *dst, char *src, size t n)
char *beg = dst;

if(src + n > dst) {
src += ny;
dst += n;
while (n--)
*——dst

*--srcCy
}
else
while (n—=)
*dst++
return beg;

}

*srct++;

10.88-7

{

The CSTDIO Library

memset

#include <stdlib.h>

void *memset (void *dst, char ¢, size_t n);

memset sets the initial n bytes of dst toc.
RETURNS: memset returns dst.

EXAMPLE: #include <string.h>
#include <stddef.h>

char * memset (char *dst, char c, size_t n)
char *beg = dst;

while (n--)
*dst++ = ¢;
return beg;

}

10.88-8

RETURNS:
SEE ALSO:

EXAMPLE:

The CSTDIO Library

mkdir

int mkdi:(pathName)
char pathNameal[]:;

mkdir creates a new directory pathName.

If drive and path components of pathName are specified, they must
exist.

mkdir returns a 0 if the directory was created, or -1 on error.
chdir (), rmdir()

/*
** create index file sub-directory
* K

** form: path/name/index-name or data-name
* %

** returns 0 == OK

*/

int icreat (name)
char *name; {
char buf[128}];

getdir(0, buf);
strcat (buf, "\\");
strcat (buf, name);
return mkdir(buf):;
}

10.89

The CSTDIO Library

modf

#include <math.h>

doublae modf (value, ipaft)
double value, ¥*ipart;

modf decomposes value into a positive fractional part and an
integer part.

RETURNS: modf returns the positive fractional part and stores the integer part
at *ipart.

SEE ALSO: frexp(), ldexp()

EXAMPLE: /*
** format the first n digits of val

*/
#include <math.h>

char *ndig(n, val, buf)
int n;
double val;
char *buf;{
double i, f£f;
int len;
char wrk([32], *index():

f = modf (val, &i);

if (1)
sprintf (buf, "%.0£f", 1):
else
buf[0] = '\0';
sprintf (wrk, "%.16f", f);
if((len = strcspn(buf, ".")) >= n){
bufin] = '\0';
else
strncat (&buf(len],index(wrk, '.')+1,n-1len);

return buf;
}

1N oNn

RETURNS:

NOTES:

EXAMPLE:

The CSTDIO Library

open

#include <dos.h>

int sopen(name, mode)
char *name, mode;

open makes an existing file available for subsequent redd, write,
and Iseek calls. '

With any DOS release, mode can be:

VALUE NAME Action

0 READ - open the file for reading only
1 WRITE open the file for writing only
2 . READWRITE open for reading and writing

With MSDOS version 3 and later, a sharing mode may be specified.
The sharing modes are:

VALUE NAME Action '
0x00 COMPAT Compatibility mode, share with all
other compatibility opens

0x10 DENYRW deny read/write opens
0x20 DENYWR deny write opens
0x30 - DENYRD deny read opens
0x40 DENYNO deny no opens

open returns a handle that identifies the file in future file
operations, or -1 if the file can't be opened.

open can open the console (*CON"), the serial port ("AUX"), or the
printer ("PRN").

/*
** open, share with everybody
* / '

#include <dos.h>

if (lfh = open(name, READ + DENYNO)) == -1)

1091

RETURNS:

NOTE:

The CSTDIO Library

overlay
(Small Case Model)

int overlay init (overlayFilename)
char *overlayFilename;

int overlay(overlayNumber)
int overlayNumbex;

void overlay close():;

int moverlay(overlayNumbaer)
int overlayNumbexr;

overlay_init must be called prior to the first overlay call and must
be used when the -V option of BIND is used. overlayFilename
contains the overlays. With DOS 2.0 and greater, the overlay file
can be in the default directory of any directory listed in the PATH
system parameter. Otherwise the file must be on the default drive
or must explicitly contain the drive number, e.g. "B:X.0V".

overlay loads overlay overlayNumber as created by the -V option -
of BIND. It must be called before any reference or call to data or
code in the overlay. Overlays are fiot automatically loaded by
referencing a value in the overlay.

moverlay loads the indicated overlays created by the -M option of
BIND. It works the same as the overlay function described above.

overlay close closes all overlay files.

overlay-init returns -1 if the file could not be found. overlay and
moverlay return -1 if overlay init has not been called
successfully, if the .OV file is bad, or if overlayNumber does not
correspond to an existing overlay.

When an overlay call is made, the functions in the previous overlays
can no longer be called and the data associated with the last overlay
is lost. If an uninitialized variable is referenced by both a module
in the root and a module in an overlay, it is placed in the root. If a
data item is initialized in a root module, it is placed in the root. If it
is initialized in an overlay, it is placed in the overlay.

10.92

RETURNS:

SEE ALSO:

EXAMPLE:

The CSTDIO Library

pow
#include <math.h>
double pow(x, y)
double x, y; -

pow computes x.

pow returns the yth power of x, or 0.0 if x = 0.0 and'y < 0.0, or if
X < 0.0 and y is not an integer (errno is set to EDOM).

exp(), log(), sgrt()

/>

** non-integer appx of pow()
*/

f#include <math.h>

double nipow(x, y)
double x, y);{

return exp(log(x) * y);
}

10.93

Character:

String:

%

The CSTDIO Library

printf

void printf(fecs [, afg 1 ...)
char fes{]:

‘printf formats the output to the file stdout.

The format control string, fcs, contains both ordinary characters
which are copied unchanged to the output, and conversion control
strings which describe how each arg is to be formatted.
Conversion control strings have the following format ({] enclose
optional entries):

% [-] [width] [parms]code

where the optional '-' specifies that the field is to be left justified —
the default is right justification.

The optional width specifies the minimum field width in bytes. A
“*' means that the width is specified by the next int arg inthe
calling sequence. A leading zero indicates that the field should be
padded with zeroes instead of blanks. The field is not truncated if
the width is too small.

Both parms and code depend upon the specific control string, as
follows.

[-] [width]lec
printf("%C", "A") - IA'
printf ("$3c”, "A") — | A

printf ("%*c”, -3, "A") — |A |
%[width] [.precision]s

precision specifies the maximum size of the string. An "*' means
that the size is specified by the next int arg in the calling
sequence. If the string is longer than the precision , then the string
is truncated. '

printf("%5s", "abcdefgh") — |abcdefgh|
printf("%-5.3s, "abcdefgh"”) — |abc |

 printf("%$5.3s, "abcdefgh") — | abc|

10.94

The CSTDIO Library

printf
Signed Integer: %[-] (sign] [width][1]d

A leading minus sign -' is automatlcally output for negative
numbers. If the optional sign isa '+, aleading plus sign is output
for positive numbers; a space outputs a blank for positive
numbers. .

The optional I (lowercase 'L’) specifies that the corresponding arg

isa long.
printf("sd", -45) - |-45|
printf ("%+d", 45) = |+45]

printf ("% 1d", 45L) —» | 45]
printf ("$0*d", 3, 45) — [045]

Unsigned Integer: $[-] [#] [width] (1]coda

specifies that a leading '0' is output for octal numbers, and a
leading 'Ox' is output for hexadecimal numbers.

code is 'u' for decimal format, ‘o’ for octal format, and 'x’ for
hexadecimal format.

print£("%u", 255) — |255]|
printf ("%o", 255) — |377]
printf ("$#x", 255) —> |OxFF|

Floating Point: $(~) [sign] (#] [.precision]code

specifies that trailing zeroes are to be output, and that a decimal
point is output, even for zero precision.

precision specifies the number of digits output after the decimal
point for code ‘e’ and 'f, or the number of significant digits for
code 'g'. ‘An'*' means that the number of digits is specified by the
next int arg in the calling sequence. Truncation causes rounding.
The default for precision: is 6.

code is'e’ for [-]d.ddddd E[-]dd format, 'f' for [-]ddd.ddd format,
and 'g’ for the shorter of ‘e’ or 'f' formats.

10.95

The CSTDIO Library
printf

printf£("%£", 1234.56789) — 11234.567890|
printf("%$.1£f", 1234.56789) — 11234.6]|
printf("%.3e”, 1234.56789) —]1.235E03]
printf ("%g", 1234.56789) — |1234.571|

Literal %: %% printf("$5.2£%%", 99.44) — |99.44%]

NOTE The maximum printf and fprintf output is 256 bytes. If you need
more use sprintf followed by puts ().

1N QA

RETURNS:

The CSTDIO Library

‘putc, putchar
#includa <stdio.h>
int putc(ch, £p)
char ch;
FILE *fp;
putc writes ch to the file fp . fp must be open.
putchar writes ch to stdout .
Linefeed ("\n') is converted to carriage return - linefeed ('\ r\n’).
Output will stop if CTRL-S is entered, and resume when any other
key is pressed. Each output will check for a CTRL-C entry and

terminate the program if it was pressed.

putc and putchar return ch , or EOF on error.

SEE ALSO: printf(), write()

NOTE:

putchar is a function rather than a macro.

1097

RETURNS:

NOTE:

SEE ALSO:

EXAMPLE:

The CSTDIO Library

- putenv
int putenv(key, newValue)

char *key, newValue[]:

putenv changes the value associated with key in the environment to
newValue. newValue is a NULL-terminated, possibly empty,
string.
putenv searches the DOS environment for an entry of the form
key =oldValue
If key is found, newValue teplaces oldValue. If key is not found, .
then a new key=newValue entry is inserted in the environment.
putenv returns 0, or -1 on error.
key is terminated by the '=' character, so
PATH=C:\
and
PATH =C:\
are different environment entries.
getenv ()
/ *
** update parents cycle number
*/

char buf(161};

" getenv ("CYCLE", buf);

sprintf (buf, "%d", atoi(buf) + 1);
putenv ("CYCLE", buf);

10 9R

RETURNS:
SEE ALSO:
NOTE:

The CSTDIO Library

puts
#include <stdio.h>
int puts (buf)
char buf[]:
puts cbpies the null terminated string buf to the console (stdout).

On output, linefeed ("\n') is converted to carriage return - linefeed
(\x\n’). Output will stop if CTRL-S is entered and resume when
any other key is pressed.

puts will check for a CTRL-C entry and terminate the program if
one occurred. _

puts returns a -1 on error,
fprintf(), fwrite()

puts doesn't append a newline.

10.99

The CSTDIO Library

putw

#include <stdio.h> '

int putw(w, £p)

int w;

FILE *£fp;

putw writes the int w to the file fp . fp must be open.
RETURNS: putw retumns w, or -1 on error.
SEE ALSO: printf(), write()

NOTE: There is no way to distinguish the return from putw (-1, fp)
from an error. ,

10 100

The CSTDIO Library

gsort

void gsort (array, num, width, compare)
char arrayl[};
int num, width, (*compare) ():

- gsort is an implementation of C. A. R. Hoare's quicker-sort
algorithm. It sorts an array of num elements, each width bytes
wide. compare is called with two arguments (pointers to the two
elements being compared), and returns an integer less than, equal
to, or greater than zero accordingly as the first argument is less
than, equal to, or greater than the second argument.

RETURNS: gsort does not return any value.,

NOTE: The usual function for compare is st xcmp (). If you are sorting
anything other than strings, the following may serve as a model:

int compare(left, right)

int *left, *right; {
return *left - *right; -
}

#define TCARD 1024
#define ISIZE sizeof (int)

int @tab[TCARD];
gsort (itab, TCARD, ISIZE, compare);
Remember that int, long, £1loat, and double values are stored

with their low-order bytes first. Thus string comparisons (i.e.,
strcmp ()) may not produce the expected results.

10.101

RETURNS:

SEE ALSO:

EXAMPLE:

The CSTDIO Library

rand

int rand():

rand computes the next pseudo-random number in the range from

0to215-1. Repeated runs of the program produce identical
sequences of pseudo-random numbers.

If you wish different sequences of numbers, or to restart the
sequence within a run, call srand to initialize the pseudo-random
number generator.

rand returns the next pseudo-random number. There are no error
codes.

frand(), srand()
/e

** flip a coin
*/ .

int coinFilp () {

return rand() > 0x4000;
}

AN «anm

RETURNS:
NOTE:

SEE ALSO:

EXAMPLE:

The CSTDIO Library

read

int read(handle, buf, count)
int handle; :
char *buf;

unsigned count;

read reads count bytes into buf from the file fp.

read starts reading from the current position of fp. After the read,
the current position has advanced count bytes or is at EOF.

read returns the number of bytes actually read (which may be less
than count if end-of-file is reached), or -1 if an error occurred.

There is no way to distinguish a normal read of 0xFFFF bytes from
an error. ‘

fgetc(), fgets(), scanf()

/*
** Small Case block transfer
*/

xfer (ih, oh)

int ih, oh;{
char *buf, * _memory():
unsigned size, amt;

freeall(256); /* min stack */

buf = memory() + 1; /* point to size */
size = (unsigned *)buf & 0xF800; /* % 2K */
buf += 2; /* point to buffer */

do {) :
if((amt = read(ih, buf, size)) = -1){
-puts("xfer: read error);
exit (1) ;

} -
write (oh, buf, amt);
.} while(amt == size);
close(oh);

}

10.103

RETURNS:

SEE ALSO:

EXAMPLE:

The CSTDIO Library

realloc

char *realloc(op, size)
char *op;
unsigned size;

realloc changes the size of the block at op to size bytes.
realloc returns a.pointer to the (possibly moved) block, or 0 if it
couldn't allocate the memory. If realloc returns 0, the original

block at op is still allocated and useable.

See the description of malloc for a discussion of the memory
allocation area. :

calioc(), free(), f'reeall(), malloc ()

/* .
** enlarge saved string

. ox/

char *savcat (str, add)
char *str, *add);({
unsigned size;
char *new;

size = strlen(str) + strlen(add) + 1;
if (new = realloc(str, size))

~ strcat (new, add):;

return new;

}

The CSTDIO Library

remove
#include <stdio.h>

int remove (char *pathname);

remove deletes the file specified by pathname .
RETURNS: remove returns 0 if the file was deleted, -1 otherwise.
EXAMPLE: #include <stdio.h>

int mustDelete (char *name) {

if (remove (name)) {
printf("can't remove %s\n", name);
abort ()
}

}

10.104-1

Lo

~, Hi ‘
gj KJAI,PW\.,LJ

-The CSTDIO Library

rename

int rename(oldFile, newFile)
char *oldrile, *newEile;

rename changes the file name oldFile to newFile.

Under DOS 2 and later, oldFile may contain a path specification. .

RETURNS: rename returns -1 if oldFile is open or if an error is detected.

EXAMPLE:

*

** create .BAK file
*/

makeBAK (01d)

- char *old;{

char *suf, new([128];

strcpy (new, o0ld);
if((suf = rindex(new, '.'))
&& suf > old && *(suf - 1)
*suf = '\0"';
strcat (new, ".BAK"):;
return rename (old, new);

}

10.105

= v

The CSTDIO Library

rewind

#include <stdio.h>

long ‘rewind (£fp):

FILE *fp;

.-rewind is the same as fseek (£fp, 0L, 0) — it seeks to the
begining of the file fp .

RETURNS: rewind returns OL, or -1 in case of error.

SEE ALSO: fseek(), ftell()

1N 1NA

The CSTDIO Library

rindex.

char *rindex(sxc, chf ;
char src[], ch;
rindex locates the last occurence of ck in src.

RETURNS: rindex returns a pointer to the last occurence of ck in src, or 0 if
ch isn't in src. -

SEE ALSO: index()
EXAMPLE: Seerename.

10.107

The CSTDIO Library
rmdir
. int rmdir (pathname)
char pathname[];
rmdir deletes the directory pathname.

pathname must be empty and must not be the current working
directory or the root directory.

RETURNS: rmdir returns 0 if the directory was deleted, -1 otherwise.

SEE ALSO: chdir (), mkdir()

10.10R

Character:
String:

Integer:

The CSTDIO Library

scanf

int scanf(fes [, ptr] ...)
char fes{]:

scanf reads from stdin . The format control string, fcs, contains:
blanks or tabs, which match optional whitespace (blanks, tabs,
newlines, formfeeds, and vertical tabs) in the input; a non-'%'
character which must match the next character in the input, and
conversion control strings which describe the type and format of
each *ptr. Conversion control strings have the following format ([]
enclose optional entries):

% [*] [width] [parms]code

where: * indicates that the field should be skipped and not assigned
to a *ptr and width specifies the maximum field size in bytes. Both
parms and code are described below. The examples have the
following form:

J_input string t — function call — resulf

$[*] [width}e
$[*] (width]s

width specifies the number of characters to be read into the array at -
*ptr . The default is 1. 'c’ whitespace is not skipped, 's' whitespace
is skipped.

| abecl = scanf("%3c", buf) = | al

| abcl — scanf("%3s", buf) - |abc]|

%$(*] (width] [size]code

size equal to T (lowercase 'L") specifies that *psr point to a long,
an 'h’ specifies a short int.

code is one of: 'd’ — signed decimal format, 'u' — unsigned
decimal format, ‘o' — unsigned octal, and "x’' — unsigned
hexadecimal.

| FF | — scanf("$x", &hex) — 255

| 377 | = scanf("$o", &oct) — 255

10.109

The CSTDIO Library

scanf

Floating Point: %[*] [width] [size]code

Scanset:

RETURNS:

SEE ALSO:

size equal to 'I' (lowercase ‘L") specifies that *psr points to a
double rather than a float.

code can be either ‘e, 'f, or 'g' — they all indicate floating point.
| 123.45 | — scanf("$f", %flt) — 123.45
| 123.45 | — scanf("%41£%d", &d, &i) — 123.0 45

$[*] [width]scanset

scanset is specified by a sequence of characters enclosed by brackets
'[''Y. It reads a string, including the terminating null character.
Leading whitespace is not skipped.

123 ABC| —» scanf("%[123]", str) = |123 |

. A range of contiguous characters can be specified by the first and

last element of the range, separated by a '-'.
1123 ABC| — scanf("${1-3]", str) — {123 |
¢

If the first element of scanset isa ' ', then all characters except
those specified will be read. '
123 ABC| — scanf ("$({*A-C]", str) — |123 |

To specify '=' or '~' in a scanset , specify it as the first element.
Thus to read an integer, skip any interviening garbage, and read
another integer

scanf ("d* [~-+0-9]%d", &digl, &dig2);

scanf returns the number of items successfully scanned, or EOF if a
CTRL-Z was read.

fscanf (), printf(), sscanf()

1intin

RETURNS:
NOTE:

EXAMPLE:

The CSTDIO Library

scr_aputs
void scq_;puts(stiing, attr);

chaxr *string, attr;

scr_aputs writes string s¢r to the display with attribute attr. "\r'
moves to the begining of the line, and "\n' moves to the next line.
Moving off the bottom line causes scrolling.

attr is defined in the IBM PC Technical Reference Manual.
sacr_aputs returns no value.

scr_aputs is in the file PCIO.A. It is for use on machines that
support the INT 10H interface.

/*
** write text in reverse video
*/

highLight (text)
char *text;({(

scr_aputs(text, 0x70);
b

10.111

The CSTDIO Libm}y-
scr_ci, scr_co, scr_csts

char scr_ci();
void scr_co(ch):
char scr_csts():;

scr_ci reads the keyboard like ci () but uses its own translation
table for command characters. The table is in the files CONFIG.C
~and PCIO.A.

scr_csts tests for a character in the input queue, and if one is found,

reads it. The character is not retained. |

scr_co writes a character to the display like co ().

RETURNS: scr_ci returns the next character from the input queue. scr_csts
returns the next character from the queue, or 0 if no character is
available. scr_co returns no value.

NOTE: All the functions are in the files PCIO.A and CONFIG.C
scr_ci and scr_csts use INT 16H in the file PCIO.A.
SEE ALSO: scr_setmode(), scr_setup()

EXAMPLE: /*
** empty keyboard queue
* Kk
** scr_csts() reads the character from the

*k input queue - csts() doesn't
*/

kbdFlush () {
while(scr_csts())

}

mni1

The CSTDIO Library

scr_clr, scr_clrl, scr_cls

void'sc;_plr();
void scr_clrl():
void scr_cls();

scr_clr erases the entire screen.

scr_clrl erases everything from the cursor location to the end of the
line.

scr_cls erases everything from the cursor location to the end of the
screen. : : '

RETURNS: There are no values returned.

NOTE: All the functions are in the file PCIO.A.,
SEE ALSO: scr_setmode(), scr_setup()
.-EXAMPLE: /* menu processing */

struct _menu {
int trow, tcol;
char *text, attrib;
int rrow, rcol;
char *response;
int (*valid) ():
}:

doMenu (mp)
struct menu mp(];{

scr_clx():

while (mp->trow != -1){

scr_rowcol (mp->trow, mp->tcol);

scr_aputs (mp->text, mp->attrib):

scr_rowcol (mp->rrow, mp->rcol);

while (! (*mp->valid) (mp->response)) {
scr_rowcol (mp->rrow, mp~>rcol);
scr_clrl();

}

10.113

RETURNS:
NOTE:

SEE ALSO:

EXAMPLE:

The CSTDIO Library

scr_cursoff, scr_curson

void scr_cursoff();
void scr_curson();

scr_cursoff tums the cursor off; scr_curson turns it back on.
The functions return no values.

Both functions are in the file PCIO.A.

scr_setup must be called prior to calling these functions.

scr_setmode (), scr_setup()

/*
** display line count
*/

scr_setup():
scr_cursoff():;
scr_clr();
lineno = 0;

.while(fgets (buf, sizeof(buf), £p))

printf("\r%u", lineno++);
scr_curson();

1n1d

The CSTDIO Library

scr_rowcol

void scr_rowecol (trow, tcol)
int trow, tcol;

scr_rowcol moves the cursor to row trow and column tcol.
RETURNS: scr_rowcol returns no value.
NOTE: scr_rowcol is in the file PCIO.A.
SEE ALSO: scr_setmode(), scr_setup()
EXAMPLE: /* menu processing */

struct _menu {
int trow, tcol;
char *text, attrib;
int rrow, rcol:;
char *response;
int (*valid) ():;
}:

doMenu (mp))
struct _menu mp([];{

scr_clx():
while (mp->trow != -1){
scr_rowcol (mp->trow, mp->tcol);
scr_aputs (mp->text, mp->attrib);
scr_rowcol (mp->rrow, mp->rcol);
while (! (*mp->valid) (mp->response)) {
scr_rowcol {mp->rrow, mp->rcol);
scr_clrl(); '
}

10.115

RETURNS:
NOTE
SEE ALSO:

- EXAMPLE:

The CSTDIO Library

scr_scdn, scr_scrdn

void scr_pédn():

void scr_scrdn(lines, fr, fc, tx, tc);
int lines, fr, f¢, tr, tec;

scr_scdn scrolls the screen down one line, but leaves the top two
lines alone.

scr_scrdn scrolls the given area down lines. The area is defined by

- the upper-left location (fr, fc) and the lower-right location (¢r, fc).

The functions return no values.
Both functions are in the file PCIO.A.
scr_setmode(), scr_setup()

/*
** gscroll a window

*/

struct _win {
char ul_row, ul_col;
char lr_row, 1lr_col;
char *name;
char attr;
} _window[MAXWIN];

wscroll (window, lines)
int window, lines;{
struct _win *wp = &_ window[window];

if(lines < 0)
scr_scrdn(—lines, wp->ul_row, wp->ul_col,
' wp->1lr_row, wp->lr_col);
else
scr_scrup(lines, wp->ul_row, wp->ul_col,
- : wp->lr row, wp->lr_col);

10.116

RETURNS:
NOTE
SEE ALSO:

EXAMPLE:

The CSTDIO Library

SCr_scup, scr_scrup

void scr_scup();

void scx scrup(lines, fr, fe¢, tr, tc);
int lines, fr, fc, tr, tec;

scr_scup scrolls the screen up one line, but leaves the top two lines
alone.

scr_scrup scrolls the given area up lines. The area is defined by the
the upper-left location (fr, fc) and the lower-right location (¢, tc).

The functions return no values.

Both functions are in the file PCIO.A.
scr_setmode(), scr_setup()

/*
** gcroll a window
*/

struct _win ({
char ul_row, ul_col;
char lr_row, lr col;
char *name;
char attr;
} _window[MAXWIN];

wscroll (window, lines)
int window, lines:{
struct _win *wp = & window[window];

if(lines < 0)
scr_scrdn(-lines, wp->ul_row, wp->ul_col,
wp->lr_row, wp->lr_col);
else
scr_scrup(lines, wp->ul_row, wp->ul_col,
wp->1lr_row, wp->lr_col);

10.117

RETURNS:

NOTE:

The CSTDIO Library

scr_setmode, scr_setup

void scr_setmode (naewMode)
char newMode;

void scr_setup();

scr_setmode sets the mode of the graphics card. newMode must be
between 0 and 6. See the Note below.

scr_setup must be called prior to any of the screen routines if the
screen is currently in 80 column mode or if scr_curson with a
monochrome display is used. This routine sets the value of the
global variables described in the Note below.

The functions return no values.

Both functions are in the file PCIO.A.

scr_setmode and scr_setup manage the'following global data.

char scr_cols; /* number of character positions */
char scr rows; /* number of lines */
char scr mode; /* current screen mode:

0 = 40 col. BW
1 = 40 col. color
2 = 80 col, BW
3 = 80 col. color
4 = 320 x 200 color graphics
5 = 320 x 200 BW graphics
6 = 640 x 200 BW graphics
7 = 80 col. BW *x/
char cr_page, /* current active display page */

inte

RETURNS:
NOTE:

SEE ALSO:
EXAMPLE:

The CSTDIO Library

scr_sinp

char scr_sinp();

scr_sinp reads the character at the current c_ursof location.
scr_sinp returns a character.

scr_sinp is in the file PCIO.A.

scr_setmode (), scr_setup()

/*
** read numeric field from screen

* %

** no test that col + len on screen
*/ ,

double readnAt (row, col, len)
char row, col, len;{
char data[80], dp = data;
double atof():

while (n--) { _
scr_rowcol (row, col++);
*dp++ = scr_sinp():;

}
*dp = '\0°';
return atof (data);

}

10.119

RETURNS:

SEE ALSO:
NOTE:

EXAMPLE:

The CSTDIO Library

setjmp
#include <setjmp.h>
int setjmp(env)
jmp_buf env;
Jmp_buf is defined in <setjmp.h> . It creates an environment used
by setjmp for future use by longjmp .
setjmp saves the environment in env .

setjmp. returns O after saving the environment, or a non-zero value
as the result of a longjmp call.

longjmp ()

env can be specified as zero for compatibility with previous

releases. There can be only one “zero" env active at any time.

If the environment stored in env points into an overlay area, then
the overlay that called setjmp must be resident when longjmp is
called — if another overlay is resident, then strange things will
happen. It is best to call setjmp from the root.

/%
** error handler
*/ :

#inélude <setjmp.h>
#include <stdio.h>

jmp_buf err;

#define error(n) longjmp(err, n)

main () {

int code:;

if (code = setjmp(err))
fprintf (stderr, "\nerror([%d]\n", code);
process();)

}

1N 1IN

RETURNS:

SEE ALSO:

The CSTDIO Library

sin

#include <math.h>
double sin (x)
double x;

sin computes the sine of its radian argument x. The meaningfulness
of the result depends upon the magnitude of the argument.

sin returns the sine of its argument. sin doesn't set any error
codes.

acos(), asin(), atan(), cos(), tan ()

10.121

RETURNS:-

SEE ALSO:

EXAMPLE:

The CSTDIO Library

sprintf

void sprintf(buf, fcs, [, axg] ...)

char buf[], fes[];

sprintf formats the output into buf, which must be large enough to
contain the output.

The format control string, fcs, contains both ordinary characters
which are copied unchanged to the output, and conversion control
substrings which describe how each arg is to be formatted. fcs is
described in printf.

sprinif doesn't return a value.

fprintf(), printf(), scanf()

/* |

** format an array of longs as a long string
** (>256 bytes) and send to file fh

*/

int 1lsfmt(da, n, £fp)
double *da;

int n, fh;{

char fcs([256]), buf[4096];
int oldsp, newsp, i;
double *dp; ’ ‘

for(i = 0, fcs[0] = '\0'; 1 < n; i++)
strcat (fcs, " %.16g");
oldsp = _showsp():
_setsp(newsp = oldsp - n * sizeof(double)):
for(i = 0, dp = newsp; 1 < n; i++)
*dp++ = *da++; /*copy to stk for sprintf*/
sprintf(buf, fcs);
_setsp(oldsp):
strcat (buf, "\n");
return write(fh, buf, strlen(buf)):
}

10197

The CSTDIO Library

sqrt

f#include <math.h>

double sqrt (x)
double x:;
sqrt computes the square root of x.

RETURNS: sgrt returns the computed square root. If x is < 0.0, sqrt returns
0.0 and sets errno to EDOM. : : .

SEE ALSO: exp(), log(), pow()

10.123

RETURNS:

SEE ALSO:

NOTE:

EXAMPLE:

The CSTDIO Library

srand

void srand(seed)
int seed; '

srand sets the seed for the random number generator to seed .

srand returns no value.
frand (), rand()

The internal form of the seed for the generator is a 1ong. srand

_only sets the low-order word, so the generator cannot be restarted

to its initial value. Solution: seed the generator with your own
integer before any calls to rand or frand .

/* ,
** keep simulating the same pattern
*x/

puts ("Starting...");
do {
srand(l); . /* init generator */
simulate () ;
puts("One more time? (y/n)..."):
} while (toupper(getchar()) == ‘'Y');

1N 174

RETURNS:

NOTE:
SEE ALSO:

EXAMPLE:

The CSTDIO Library

sscanf

int sscanf (buf, fcs [,‘ptr 1 ...)
char buf[], fes[];

sscanf reads from the string buf, assembles data under the
specification of fcs, and stores the data at *ptr.

The format control string, fcs, is described in scanf.

sscanf returns the number of fields scanned and assigned. A return
of zero means no fields were converted.

Use sscanf when the input line being scaned exceeds 256 bytes.

fscanf (), scanf()

/*
** scan a very long line of doubles that begin
** with a space from file fp

** return number scanned

*/

l1scanf (fp, da)
FILE *fp;
double *da;{
int i, n = 0;
char buf({4096], *bp = buf:

if (fgets (buf, 4096, fp) == NULL)
return 0;
while(i = sscanf(bp, "%d %d %d %d",
da, da+l, da+2, da+3)){
n += i; '
da += {i;
while (i--)
bp = index(bp + 1, 0x20);
if(i < 4)
break:;
}
return n;

}
10.125

The CSTDIO Library

strcat

char *strcat (dst, sxc)
char *dst, srcl]:

strcat appends a copy of src (including the terminating ' \0') to
the end of dst .

‘There is no test for overflow.
RETURNS: strcat returns a pointer to the concatenated string, dst.
SEE ALSO: strncat ()
EXAMPLE: /*

** concatenate src to the end of dst.
** dst 1s assumed to be large enough

* % to hold both dst and src
* %

** return dst

*x/ -

char *strcat (dst, src)
char *dst, *src:{
char *ret = dst;

while (*dst++)

dst--;

while (*dst++ = *src++)
;

return ret;

}

1N 174

RETURNS:

EXAMPLE:

* The CSTDIO Library

strchr

#include <string.h>

char *strchr(char *str, char c);

strchr locates the first occurrence of ¢ in the string str .
The terminating null character is considered to be part of the string.

strchr teturns a pointer to ¢ , or NULL if ¢ doesn't occur in str .

#include <string.h>
#include <stdio.h>

char *strchr (char *str, char c¢) {
int n; :

n = strlen(str) + 1; /* include null */
while (n--) .
if (*str++ == c)
return str - 1;
return NULL;
}

10.126-1

The CSTDIO Library

strcmp

int strcmp(sl, s2)
char *sl, *g2;

strcmp compares the the contents of s/ with the contents of s2. The
comparison stops when a mismatch occurs or when the end-of-
string character (*\0') is encountered.

RETURNS: strcmp returns a value indicating the result of the comparison.

Value
+1 sl is lexically greater than than s2
0 sl is lexically equal to s2
-1 sl is lexically less than 52

SEE ALSO: strcmpi(), strncmp()

EXAMPLE: /* _
** comapre two strings
*/ v

int strcmp(sl, s2)
char *sl, *s2;{

i1f(sl == s2)
return 0;
while(*sl == *g2++)
1f(*s14+ == *\Q"'")
return 0;
return *sl - *(--s2);

10.127

RETURNS:

SEE ALSO:

EXAMPLE:

The CSTDIO Library

strempi

int strcmpi(sl, s2)
char *sl, *s2;

strempi compares the the contents of s/ with the contents of s2
without regard for case — the upper and lower-case forms of a
character are equivalent. The comparison stops when a mismatch
occurs or when the end-of- string character (' \0') is encountered.

strcmpi returns a value indicating the result of the comparison.

Value Comparison
+1 sl is lexically greater than than s2
0 sl is lexically equal to 52
-1 sl islexically less than s2

strcemp (), strncmp ()

/*
** comapre two strings without regard to case
*/

int strcmpi(sl, s2)

char *sl, *s2;{(

if(sl == s2)
return 0;

while (tolower(*sl) == tolower(*s2++))
if(*sl++ == '\0"')
return 0;
return tolower(*sl) - tolower(*(--s2)):

10198

The CSTDIO Library

strcpy

char *strcpy(dst, sxc)
char *dst, sxre[]:;

strcpy copies src to dst , stopping after the terminating '\0' has
been transferred.

There is no test for overflow.
RETURNS: strcpy returns a pointer to the copied string, dst.
SEE ALSO: strcat(), strncpy()
EXAMPLE: /*
** copy src to dst
*/
char *strcpy(dst, src)
char *dst, *src;{
char *ret = dst;
while (*dst++ = *src++)

return ret;

}

10.129

The CSTDIO Library

strcspn

int strcspn(sl, s2)
char sl1l[], s2(]:

strespn searches s/ for any of the characters in s2. The index of
the first character found is also the length of the begining substring
of s that consists entirely of characters pnot in s2. Terminating
*\0 ' characters are not part of the search.

RETURNS: strcspn returns the index of the first character of s/ that is in s2..
SEE ALSO: strspn()

EXAMPLE: /*
** return the number of characters in the
** begining of sl that are NOT in s2
*/

int strcspn(sl, s2)
char *sl1, *s2;{
char *slp, *s2p;

for(slp = 'sl; *slp:; slp++){
for(s2p = s2; *s2p && *s2p != *slp; s2p++)

. 1f(*s2p)
break;

}
return slp - sl;

}

10.130

RETURNS:

SEE ALSO:

EXAMPLE:

The CSTDIO Library

- strdup

char *strdup (src)
char sxrc[]:

strdup allocates storage space via malloc for a copy of str, and

-copies str- (including the terminating ' \0 ') into that space.

strdup returns a pointer to the allocated area, or NULL if the area
couldn't be allocated. :

malloc(), strcpy()

/*
** save a copy of a string
*/)

char *strdup(str)
char *str;{
char *sav, *malloc():;

if (sav = malloc(strlen(str) + 1))
strcpy (sav, str);
return sav;

}

10.131

RETURNS:

EXAMPLE:

The CSTDIO Library
stricmp
#include <string.h>
int stricmp (char *sl, char *32);
stricmp compares the string pointed to by s2 to the string pointed
to by s/ , without regard to the case of the characters.

stricmp returns a value indicating the case insensitive
lexicographical relationship of sI to s2 as follows:

Value Meaning

<0 sl islessthan s2 .
0 sl isidentical to s2 .
>0 sl is greater than s2 .

#include <stddef.h>
#include <string.h>
#include <ctype.h>

#define TU(c) toupper (<)

int stricmp(char *sl, char *s2) ({
-int nl, n2, cl, c2;

nl = strlen(sl):
n2 = strlen(s2);
if(nl > n2)
nl = n2;
while (nl--)
if((cl = TU(*sl++)) 1= (c2 = TU(*s2++)))
return cl - c2;
return TU(*sl) - TU(*s2);
}

10.132

The CSTDIO Library

strlen

int strlen(char src[])

strlen counts the number of characters in src, excluding the
terminating '\0"'.

RETURNS: strien returns the length. There are no error codes.

EXAMPLE: /~*
** return the string length
*/

int strlen(str)
char *str;{
char *beg = str + 1;

while (*str++)

return str - beg;

}

10.132-1

Ry iy £
(Q—f}-\tj'{f""/“/\./a:ﬁ/‘*@&’v ?/ 4""6"’“’#’3««

The CSTDIO Library

striwr

int strlwr(szc)
char src[]:

strlwr converts any upper-case characters in src to lower-case.
RETURNS: strlwr retumns a pointer to the converted string, src.
SEE ALSO: strupr()

EXAMPLE: /* _
** convert string to lower case

*/

char *strlwr(str)
char *str;{
char *ret = str;

for(; *str; str++)
*str = tolower(*str);
return ret;

}

10.133

RETURNS:
SEE ALSO:

EXAMPLE;:

The CSTDIO Library

.strncat

char *strncat (dst, sre, max)
cha; *dst, sxcl]:
int max;

strncat appends, at most, max Bytcs of src to the end of ds¢ .
strncat returns a pointer to the concatenated string, ds.
strcat ()

/*
** concatenate at most n bytes of src to dst;
* * ’

** return dst

*/

char *strncat(dst, src, n)
char *dst, *src;
int n;{

char *ret = dst;

while (*dst++)

.
’

dst--;
while (*dst++ = *src++)
if(n--)
continue;
*(-=dst) = '\0';
break;

}

return ret;
}

©10.134

The CSTDIO Library

strncmp

int strncmp(sl, s2, max)
chaxr *gl, *s2;
int max;

strncmp compares.at most, max bytes of the two strings s/ and s52.

RETURNS: strncmp returns a value indicating the result of the comparison.

Yalue '
+1 sl is lexically greater than than s2
0 sl is lexically equal to s2
-1 sl islexically less than s2

SEE ALSO: strcmp(), strcmpi ()

EXAMPLE: /~* :
** compare at most n bytes of two strings
*/

int strncmp(sl, s2, n)
char *sl, *s2;
int n;{

1f(81 == g2)
return 0; _
while(n-- && *sl1 == *52++)
1f(*sl4++ == '\Q")
return 0; :
return n == 0 ? 0 : *sl - *(--s52);

}

10.135

RETURNS:
NOTE:

SEE ALSO:
EXAMPLE:

The CSTDIO Library

strncpy

char *strncpy(dst, src, len)
char *dst, src[]:
int len;

strncpy copies exactly len bytes of src to dst, truncating or

padding with '\0"' as required; dst may not be null-terminated if
strlen(src) >= len.

strncpy returns a pointer to the copied string, dst.

The returned string is not terminated witha ' \0 ' if n is greater
than or equal to strlen(src).

strcpy ()

/%
** copy src to dst -- truncate or pad with 0
** so that exactly n bytes are copied

* K) . .

** return dst

*/

—

char *strncpy(dst, src, n)
char *dst, *src:
int n;{ _

char *ret = dst;

while(n--)
if((*dst++ = *src++) == '\0'){
while(n--)
*dst++ = '\0';
break;

}

return ret;
}.

10 13A

The CSTDIO Library

strpbrk

' char *strprbk(sl, s2) .
char sl[], s2[]; ‘

strpbrk searches sl for any character from s2. The terminating
'\0"' characters are not included in the search.

RETURNS: . strpbrk returns a pointer to the first character found, or NULL if
the strings have no character in common.

SEE ALSO: index(), rindex()

EXAMPLE: /*
** return pointer to first char in sl that is
** also in s2 -- NULL otherwise

* /
#define NULL (char *)0

char *strpbrk(sl, s2)
char *sl, *s2;:{ :
char *s2p;

do {
for(s2p = s2; *s2p && *s2p != *sl; s2p++)

1f (*s2p)
return sl;
} while(*sl++);
return NULL;
}

10.137

RETURNS:

EXAMPLE:

The CSTDIO Library

strrchr
#include <string.h>

char *strrchr(char'*str, char c);

strchr locates the last occurrence of ¢ in the string str .
The terminating null character is considered to be part of the string.
strrchr returns a pointer to ¢, or NULL if ¢ doesn't occur in str .

#include <string.h>
$include <stdio.h>

char *strrchr{char *str, char c) {
char *beg = str;

while (*str++)
while (--str >= beg)
if(*str == c)
return str;
return NULL;
}

10.138

The CSTDIO Library

strrev

char *strrev(src)
char sxrc[]:;

strrev reverses the order of characters in src.
RETURNS: strrev returns a pointer to the altered string, src.
SEE ALSO: strcpy(), strset()

EXAMPLE: /*
** reverse elements of a string

*/

char *strrev(src)
char *src;{
char *beg, *end, ch;

beg = end = src;
while (*end++)

end -= 2; /* point to last char */
while (end > begqg) {

ch = *end;

*end-- = *beg;

*beg++ = ch;

}
return src;

}

10.138-1

£ /

Lt /1 ;.
| T ol [Adu R
4 7\,,"-..9- d" (4

The CSTDIO Library

strset

char *strset (dst, ch)
char dst[], ch;

strset sets all of the characters of dst to ch.
RETURNS: strset returns a pointer to the altered string, dst.
SEE ALSO: _setmem()

EXAMPLE: /*
** £ill dst with ch
*/

char *strset (dst, ch)
char *dst, ch;{
char *ret = dst;

while (*dst)
*dst++ = ch;

return ret;

}

' 10.139

RETURNS:
SEE ALSO:
EXAMPLE:

The CSTDIO Library

strspn

char *strspn(sl, s2)
char *gl, *g2;

strspn searches s/ for a character that is not a member of s2. The

 index of the first character in s notins2 is also.the length of the

beginning substring of s/ that consists entirely of characters in s2.

Terminating *\0 "' characters are not part of the search.

strspn returns the index of the first character of s/ that is not in 52..
strcspn()

/*
** return length of initial substring of sl
** made up solely from members of s2

/* '

int strspn(sl, s2)
char *sl, *s2;{
char *slp, *s2p;

for(slp = sl1; *slp; slp++) {
for(s2p = s2; *s2p && *s2p != *slp; s2p++)

1f(*s2p == '\0')
break;
}

return slp - sl;
}

10.140

The CSTDIO Library

-strstr.
#inciude <string.h>

char *strstr(char *sl, char *s2); .

Strstr Iocates the first occurrence of 52 (excludmg the terminating
null character) in s]

RETURNS: strstr- retums a pomter to the occurrence of s2 , NULL otherwise.

EXAMPLE: #include <string.h>
- . #include <stdio.h>

char *strstr(char *sl, char *s2) :{
int n;

if(n = strlen(s2))
while(sl = strchr(sl, *s2)) {
1f(memcmp(sl s2, n) == 0)
_return sl;

Sl++f
}

return NULL;:

}

-10.140-1

RETURNS:

EXAMPLE:

The CSTDIO Library

strtod — strtol

#include <stdlib.h>
double strtod(c¢har sil]. char- **eptr) ;
long strtol(char s[], char **eptr, int b);

strtod and strtol converts to a double or a long, respectively.
The conversion continues until the first character which cannot be
converted is found. If eptr is not NULL, a pointer to the
terminating character is put in *epr.

If b is between 2 and 36, it is used as the number base for the
conversion. If b is 0, then the initial digits of 5 are used to
determine the base: if s (0] is '0* and s {1] is an octal digit, then
the base is 8; if s [0] is * 0 and s [1] is either 'x' or 'X', then
the base is 16.

strtod expects s to contain a string of the form

[whitespace] [+}-] [digits] [.digits] [e|E] [+]-] [digits])

strtol expects s to contain a string of the form

(whitespace] [+]-1 [01 [xIX] [digits]

striod and strtol return the converted value, if any. If no
conversion could be performed, zero is returned. If the correct
value would cause underflow or overflow, plus or minus
HUGE_VAL is returned from sirfod and LONG_MAX or LONG_MIN
is returned from strtol , (according to the sign of the value), and
errno is set to ERANGE. :

#include <stdlib.h>
#include <stdio.h>

double getIntval (void) {
char buffer([80]; '

fgets (buffer, sizeof (buffer), stdin):;
return strto(buffer, NULL, 0):

}
10.140-2

RETURNS:

SEE ALSO:
EXAMPLE:

The CSTDIO Library

strtok

char *strtok(str, dim)
char *str, *dim;

strtok decomposes str into a sequence of tokens delimited by one or
more of the delimiter characters of dlm. The tokens are returned
via a series of calls to streok.

The first call to streok specifies str, while subsequent calls subtitute
NULL for str.

Each call skips initial delimiters (i.e., strspn (str,dlm)), and
then scans for the trailing delimiter (i.e., strpbrk (str,dim)).

strtok returns a pointer to the first/next token in str, or NULL if
there are no more tokens.

All tokens are terminated with ' \0".
strcspn(), strspn()
/* break string into tokens /*

char *strtok(str, dlm)

char *str, *dlm;{
char *beg, *end, *strpbrk():
static char *nxt;

if((beg = (str == NULL) ? nxt : str) == NULL)
return NULL;

beg = beg + strspn(beg, dim);

if(*beg == *'\Q"')
return NULL; :

if((end = strpbrk(beg, dlm)) == NULL)

nxt = NULL;
else{
*end++ = '\0';

nxt = end;
}

return beg;

}

10.141

The CSTDIO Library

strupr

int strupr(src)
char src{]:

strupr converts any lower-case characters in src to upper-caée.
RETURNS: strupr returns a pointer to the converted string, src.
SEE ALSO: strilwr()

EXAMPLE: /+*
** convert string to upper case
*/

char *strupr(src)
char *src;{
char *ret = src;

for(; *src; src++)

*src = toupper(*src);
return ret;
}

10.147

RETURNS:

EXAMPLE:

The CSTDIO Library

system
#include <stdlib.h>

int system(char cmd[]);

system invokes the DOS COMMAND . COM to execute cmd .

system uses the environment variable COMSPEC to locate
COMMAND . COM.

system rteturns 0 if cmd was successfully executed, -1 otherwise.
#include <stdlib.h>

int system(char cmd[]) {
char path[65], arg[l29];

getenv ("COMSPEC", path);

strcpy (arg, "/c"):

strcat (arg, cmd):;

if (exec(path, arg))
return -1;

return 0;

}

10.142-1

L f) A
ﬂ” e it %M,?,
- fjr’{;@mé

RETURNS:

SEE ALSO:

The CSTDIO Library

tan

#include <math.h>
double tan(x)
double x;

tan computes the tangent of its radian argument x. The
meaningfulness of the result depends upon the magnitude of the
argument.

tan returns the tangent, or a huge number and sets errno to
ERANGE at its singular points.

acos(), asin(), atan(), cos(), sin()

10.143

- The CSTDIO Library‘
times

void times (buf)
char buf[9];

times formats the string buf with the current time as "hh-mm-ss".

If hh, mm or ss are less than 10, they will be formated with a space
(0x20) as their first character,

RETURNS: times returns no value.
SEE ALSO: ctime()

EXAMPLE: /*
** sleep n seconds
*/

sleep(n)
int n;{
char cur([9], ref[9];

times (cur):;
while (1) {
times (ref);
if (strcmp (cur, ref))
if(n==- == Q)
return;
else
strcpy (cur, ref);

1N 144

RETURNS:

NOTE:

EXAMPLE:

The CSTDIO Library

tolower, toupper

char tolower (c)
char ¢;

char toupper(c)
char c;

tolower converts upper-case letters to lower—case toupper
performs the opposite conversion.

Both functions return the converted character, or ¢ unchanged if it
isn't the correct case.

These are functions rather than the usual macro implementation.

/*
** if c 1s upper case, return lower case
** else return c

*/

tolower(c) {
char c;{

1f(c >= 'A' §§ c <= '2')
c -= 'A' - vav;

return c:;

}

/*
** {f ¢ is lower case, return upper case
** else return c

*/

toupper(c) {
char c;{

if(c >= 'a' & ¢c <= 'z")
c += 'A' - lal;
return c;

}

10.145

RETURNS:

NOTE:

SEE ALSO:

EXAMPLE:

The CSTDIO Library

ungetc
##include <stdio.h>
int ungetc(ch, £p)

char ch;
FILE *fp;

ungetc pushes the character ch back onto the file fp. The next call
to getc orfgetc willreturn ch .

Only one character can be pushed back ontofp between calls to getc
or fgetc . '

ungetc returns c;h, or -1 if it can't push the character back.
fseek clears all pushed characters.

EOF (-1) can't be pushed.

getc (), getchar ()

/* get an unsigned number from console */

#define val(ch) (isdigit{ch) ? ch - '0':\

10 + tolower(ch) - 'a')
long ctol (base)
int base; {
long num = 0L;
int 4, ch:

if(base < 0 |] base > 36)
return val;
while(isalnum(ch = getc(stdin)) &&
(d = val(ch)) < base)
num = num * base + d;
ungetc (ch, stdin);
return num;

}

1IN 1AL

The CSTDIO Library
unlink
int unlink(oldrile)
char *oldFile;
unlink deletes the file oldFile. Under DOS 2.0 and higher, oldFile

may contain a path specification.

RETURNS: unlink returns 0 if successful, or -1 if oldFile doesn't exist, is open,
: : or if an error is detected.

10.147

RETURNS:
NOTE:
EXAMPLE:

The CSTDIO Library
utoa
#include <stdlib.h> -
char *utoa(unsigned v, ché.r s[], int x);
utoa converts v into-a null terminated string ats. r specifies the
base of v ; it must be in the range 2 — 36.

If r is 10 and v is negative, the first character of s will be thé minus
sign, '-'. : ‘

utoa returns a pointer to s .

utoa is implemented as a macro

#include <stdlib.h>

/*. convert unsigned to string */

char *utoa(unsigned val, char *str, int rad) {

return ltoa{(long)val, str, rad);
}

10.148

The CSTDIO Library

write

int write (handle, buf, count)
int handle; :
char *buf;

unsigned count;

write writes count bytes from buf to the file fp.

write starts writing at the current position of fp. After the write,
the current position has advanced count bytes.

RETURNS: write returns the number of bytes actually written, or -1 if an error
occurred.

SEE ALSQ: fputc(), fputs(), printi()

EXAMPLE: /*
: ‘ *% Small Case block transfer
*/

xfer (ih, oh)

int ih, oh;{
char *buf, *_memory();
unsigned size, amt;

freeall(256); /* min stack */
buf = memory() + 1l; /* point to size */
size = (unsigned *)buf & 0xF800; /* % 2K */
buf += 2; /* point to buffer */
do { .
amt = read(ih, buf, size);
if(amt && write(oh, buf, amt) != amt) {
puts ("xfer: write error);
exit (2);
}
} while(amt == size);
close(oh);
}

10.148-1

rd
L

7

PO 3 ol /HZ
{ 7
i) /’,‘»-__'__."{48"':“\,/' A {,IJ'\,,&*’LIC 99

1/
/

7
&

RETURNS:

"SEE ALSO:

EXAMPLE:

The CSTDIO Library
_doint

extern unsigned _rax, _rbx, _rcx, _rdx,
_xsi, _zrdi, _res, _xds;
extern char _carryf, _zarof;

void _doint (inum)
char inum;

_doint will cause software interrupt inum and may be used to call
whatever routines are available in the particular machine.

_rax- _rds contain the values of the corresponding 8088 internal
registers that are loaded and saved by _doint .

_carryfis the carry flag; _zerof is the zero flag
If _rds is set to -1, the current value of the DS register is used.

_doint returns no value. The interrupt may return values in _rax,

_os()

/*
** get current cursor location via int 10H
% %k .

/*

#define scr_row() (scr_curloc() >> 8)
#define scr_col() (scr_curloc() & OxFF)

scr_curloc() { - _
extern unsigned _rax, _rbx, _rdx;

_rax = 0x0300; /* AH = 3 */
_rbx = 0;

_doint (0x10);

return _rdx;

}

10.149

The CSTDIO Library

_gets

int _gets (buf, max) ;
char buf[];
int max;

_gets obtains a string of not more than max - 1 characters from the
console into buf.
Editing proceeds as with gets .

RETURNS: _gets returns the number of characters obtained, or 0 on end of file
: Or an error. ‘

SEE ALSO: fscanf(), fread() -

NOTE: _gets doesn't return the CR character.

1mn1.n

The CSTDIO Library

_in, _out

char _inb(port)
unsigned port;

unsigned _inw(pozrt)
unsigned port;

void _putb(ch, peort)
char ch;
unsigned port;

void _outw(wd, port)
unsigned wd, port;

_inb and _inw read the byte ch and word wd, respectively, from
the indicated port

_outb and _outw write the byte ch and word wd, respectively, of
data out to the indicated port.

RETURNS: _inb and inw_ return the byte or word read There are no error
values or codes.

EXAMPLE: /*
** read comm port

*/

#define MCR (port + 4)
#define LSR (port + 5)
f#define MSR (port + 6)

#define DSR 0x20
#define RDY 0x01

agetc(port)
int port:{
_outb(1l, MCR); /* set DTR */
while(! (_inb (MSR) & DSR))
H /* wait for data set ready */
while (! (_inb(LSR) & RDY))
; /* wait for data */
return _inb(port); /* read data */

}
10.151

RETURNS:

SEE ALSO:

NOTE:

The CSTDIO Library

Imove

(sn;ll case model)
void _lmove(num, sp, sseg, tp, tsegq)

char *sp, *tp;
unsigned num, sseg, tseg;

_Imove moves num bytes from the 8088 physical address at
sseg:sp to tseg:tp . For example, to move the color display frame
buffer at address 0xB800: 0 to a local buffer (_showds provides
the C program data segment — DS)

_lmove (4000, 0, 0xB80O, bﬁffer, _showds ());
_Imove returns no value.

_move ()

_Imove takes advantage of the 8088 instructions for a fast data
move. It handles overlapping moves correctly so that

_lmove (3920, 0, 0xB800, 80, 0xB800):;

will move 0xB800:3919 to 0xB800:3999, 0xB800:3918 to
0xB800 : 3998 etc. rather than propagating 0xB8800: 0.

1N 10"

The CSTDIO Library

_memory

(small case model)

char * memoxy ()’

RETURNS: _memory returns a pointer to the first free byte beyond the
uninitialized data area in the small case model.

See the Memory Management discussion of the memory
allocation area. .

SEE ALSO: malloc{()

EXAMPLE: /*
** get the size of the malloc area

*/

struct ({
char stat;
unsigned size;
char dataf{l]:
}:

maxMem (stack)
int stack;{ /* size of stack expansion area */
char *mp, *_memory();

freeall (stack);
mp = _memory();
return mp->size;

}

10.153

RETURNS:
SEE ALSO:
NOTE:

The CSTDIO Library

_move

void _move (number, sourcePtr, targetPtr);
unsigned numbex;

char *sourcePtr, *targetPtx;

_move moves number bytes from sourcePtr to targetPtr .
_move returns no value.

_lmove ()

_move takes advantage of the 8088 instructions for a fast data
move. It handles overlapping moves correctly so that

char buffer(80];
_move (79, buffer, &buffer(l]);
will move buffer[78] to buffer[79], buffer[77] to

buffer[78] etc. rather than propagate buffer [0]. Use
_setmem to fill a range of memory with a value.

10.154

RETURNS:

SEE ALSO:

EXAMPLE:

The CSTDIO Library

0S

char _os(inum, arg);

chaxr inum;

unsigned arg;

_os provides an elementary interface to the BIOS.

inum goes into AH, arg into DX, and an int 21H is executed.

_os returns the value returned from the interrupt in the 808X AL
register. .

_doint ()

/.

** use DOS function 09H to print a string
*/ :

main () {

_0s(9, "Hello World!!$")
}

10158

The CSTDIO Library

_peek, _poke
char _peek(sp, sseg):;
char *gp;
unsigned sseg;
void _poke(ch, tp, tseg):

. char ch, *tp;
unsigned tsag;

_peek is used to retrieve a byte ch from the 8088 physical address
at sseg:sp .

_poke is used to store the byte ch of data to the 8088 physical
address at tseg:tp .

RETURNS: _peek returns the byte, _poke returns no value.
EXAMPLE: /~*
** get environment strings - small case
** assumes environ is lower in memory than PSP
*/
extern unsigned _pcb; /* PSP address */

getEStr() {
unsigned _memory(), env, size;

env = peek(0x2D,_pcb); /*high-order byte*/
env = (env << 8) | _peek(0x2C,_pcb);

size = (_pcb - env) << 16;
_lmove(size, 0, env, _memory(), _showds()):;

return _memory():;

}

10.156

The CSTDIO Library

_setmem

void _setmem(dst, number, ch);
char *dst, ch;
unsigned number:;

_setmem sets number bytes of memory starting at dst to the byte
value ch . :
RETURNS: _Setmem rteturns no value.
SEE ALSO: strset(), _move()
EXAMPLE: /* |
** zero an array - use instead of
** for(i=0; 1i<SIZE; i++) data(i] = 0;
*/

#define zArray(a) _setmem(a, sizeof(a), 0).

double test[1024];

zArray (test) ;

10.157

The CSTDIO Library

_setsp

void _setsp(sp)

chaxr *sp;

_setsp sets the stack pointer (the SP register) to sp.
RETURNS: _setsp returns no value.

NOTE: In small case, sp can range from 0 to OxFFFF. In large case, the
range is O to the size of the stack - 1.

10.158

The CSTDIO Library

_showcs, _showds, _shoWsp |

unsigned _showcs();
unsigned _showds ()
unsigned _showsp():

RETURNS: _showcs returns the paragraph address of the code segment (the CS
register).
_showds returns the paragraph address of both the data and stack
segment (the DS and SS registers) in small case and the data segment

in large case.

_showsp returns the contents of the SP regiéter in small case and
SS:SP in large case.

10.159

Appendix A

Messages

ASMS88 Assembler Messages
Banner and Termination Messages
ASMB88 Fatal Error Messages
ASMS8 Error Messages

BIND Messages
Banner and Termination Messages
BIND Fatal Error Messages
BIND Warning Messages

(C88 Compiler Messages
Banner and Termination Messages
C88 Fatal Error Messages
C88 Error Messages
C88 Warning Messages
ASMS88 Messages from C88

CLIST Messages
Banner and Termination Messages
CLIST Fatal Error Messages

D88 Messages

LIB88 Messages
Banper and Termination Messages
LIB88 Fatal Error Messages
LIB88 Warning Messages

SEE Messages
Banner and Termination Messages
SEE Error and Status Messages

Appendix A: Messages

ASMS88 Messages

Banner and Termination Messages

ASM88 8088 Assembler V1.5 (c) Mark DeSmet, 1982-86
(various error messages)
end of ASMB8 0016 code 0000 data 1% utilization
The 'code’ number is in hex and tells how many bytes of code were produced. The
'data’ number is similar and tells how many bytes of data were produced. The
utilization percentage shows how full the symbol table was.

Sample of list output:

ASMS88 Assembler BLIP.A

% ;TOUPPER A convert a charcter to upper case
3 CSEG
g PUBLIC TOUPPER
6 ; character = toupper(character)
7
0000 5A 8 TOUPPER: POP DX ;RETURN ADDRESS
0001 58 9 POP AX ;CHARACTER
0002 3C61 10 CMP AL ;JF LOWER THAN ‘2’
11 JC TO DONE ;DO NOTHING
0004 3C7B 12 CMP ALZ ;ORIF ABOVE 7'
13 JNC TO DONE ;DO NOTHING
0006 2C20 14 SUB ALa-'A' ;ELSE ADJUST
0008 B400 15 TO DONE: MOV AH,0 ;RETURN AN INT

-000A FFE2 16 JMP DX ;RETURN

ASMB8 prints two categories of messages: fatal errors and errors. As with C88, the
fatal errors are caused by I/O errors or similar. Errors are simply syntax errors in
using the language. When a fatal error is detected, ASM88 prints a message and -
stops. An error does not stop the assembler, but it stops writing the object module
to run faster. If errors are detected, the object module is never good.

Page A.1

Appendix A: Messages

ASMB88 Fatal Errors

cannot close <file> — the file could not be closed. Aﬁ /O error occurred.

cannot create <file> — the named file could not be created. The name is a
temporary name or the name of the object or list file. This message usually
means the drive is full (see T option).

cannot open <file> — the named source or include file could not be found.

cannot read <file> — the named file could not be read. Usually means an /O
error was detected.

cannot unlink <file> — the temporary file could not be deleted. An I/O error
occurred.

cannot write <file> — the named file could not be written. An I/O error was
detected. Usually means the disk drive is out of space.

internal error in jump optimization — the assembler became confused
optimizing branches.

no input file — no filename followed the ASM88 when invoked.
too many labels — only 1000 labels are allowed.

too many symbols — the assembler ran out of symbol space. The source
program should be broken into smaller modules.

ASMB88 Error Messages

Error messages have the form:

44 mov #44,a3
error: illegal mnemonic

Page A.2

Appendix A: Messages

or, if the error was found in an include file:

44 mov #44,a3
-file:2:SCREEN.A error: illegal mnemonic

The messages are:

address must be in DSEG — address constants can only be in DSEG because
constants in CSEG are not fixed up at run time.

bad DS value — a constant expression must follow the DS.

bad include — the correct form for an include statement is:
include "filename”

bad LINE value — the line statement should be followed by a constant.
cannot label PUBLIC — a 'public’ statement cannot have a label.

data offset must be an unsigned — an attempt was made to use an offset in a
byte or long constant.

DS must have label — storage cannot be reserved without a name.
DS must be in DSEG — storage can only be reserved in DSEG.
duplicate label — the label on the line was defined previously.

equate too deep — an 'equ’ may reference a prior one, but only to a depth of
four.

illegal expression — the expression had an illegal operator or is somehow
invalid.

illegal operand — an operand had a type that was not legal in that context.
illegal reserved word — a reserved word was found in the wrong context.

illegal ST value — the index to a floating point stack element must be in the
‘range Oto 7.

Page A3

Appendix A: Messages
incorrect type — only 'byte', 'word’, 'dword’, and 'tbyte’, are allowed following
the colon to type a public. -

impossible arithmetic — an arithmetic operation has operands incompatible
with the 8086 architecture, for example:

add word [bx], word[si]
in wrong segment — a variable or label is being defined in a segment other than
the segment of its 'public’ statement. Remember that 'public’ statements must

be in the correct segment, following 'dseg’ or ‘cseg' as appropriate.

invalid BYTE constant -— a byte constant was needed, but something else was
found.

invalid constant — the instruction needed a constant and something else was
found.

invalid DD constant — the value of a 'DD' must be a constant expression.

invalid DW constant — the value of a'DW' must be a constant expression or a
variable name. In the latter case, offset is assumed. The statement:

dw offset zip
is illegal since offset is already implied. Just use:
dw zip
invalid offset — an offset of the expression cannot be taken.
line too long — the maximum input line to ASM88 is 110 characters.

mismatched types — the types of the two operands must agree.

example:
db chr
add ax,bl . ;illegal
add chr,ax ;illegal
add word chr,ax ;legal

Page A.4

Appendix A: Messages

misplaced reserved word — a reserved word was found in an expression.

missing : — the '?" operator was missing the colon part.

missing) — mismatched parentheses.

missing] — mismatched braces in an address expression.

missing ':' — labels to instructions must be followed by a colon. This message
also prints when a mnemonic is misspelled. The assembler thinks that the bad
mnemonic is a label without a colon.

missing EQU name — an equate statement lacks a name.

missing type — the memory reference needs a type. In the case of 'public's
defined elsewhere, the type can be supplied by ":byte’ or :word' on the public

statement. In the case of anonymous references, the 'byte’ or 'word' keyword
must be used, for example: .

public a:byte

inc a ; illegal
inc byte a ; legal
inc es:[bx] ; illegal
inc es:word(bx] ; legal

need constant — something other than a constant expression followed a 'ret'.

need label — a jump relative was made to something other than a label. jmp's
may be indirect but ‘jz's etc. can only jump to a tabel.

nested include — an included file may not include another.
not a label — onfy names can be public.
RB must have label — an 'RB' statement must have a label.

RB must be in DS — 'RB's must follow a DSEG directive as they can only be in
the data segment. 'DB's can be in the code segment.

RW must be in DS — as above.

Page A.5

Appendix A: Messages

too many arguments — the instruction had more operands than allowed or the
last operand contains an illegal op-code.

undefined variable <name> — the name is referred to but not defined or listed
as public.

unknown mnemonic — the mnemonic is illegal.

Page A.6

Appendix A: Messages

BIND Messages

Banner and Termination Messages

Binder for C88 and ASM88 v2.0 (c) Mark DeSmet, 1982-87
end of BIND 9% utilization

BIND Fatal Error Messages

BIND prints the message, prints 'BIND abandoned' and quits.

bad argument — an argument is illegal.

bad object file<name> — the object or library file contains an illegal record.
bad stack option — the 'S' option should be followed by one to four hex digits.
cannot close <file> — /O error occurred.

cannot create <file> — I/O error or disk out of room. On MS-DOS 2.0 and
later, make sure that the CONFIG.SYS file contains a FILES=20 command.

cannot open <file> — the object file could not be found. On MS-DOS 2.0 and
later, make sure that the CONFIG.SYS file contains a FILES=20 command.

cannot read <file> — /O error occurred.
cannot seek <file> — I/O error occurred.
cannot write <file> — I/O error or disk out of room.

different segments for - <name> — the public is declared in different
segments in different modules — probably both as a function and as a varjable.

illegal overlay number — in the overlay options -Vrin and -Mnn, the value nn
must be between 1 and 39 in ascending consecutive order.

multiply defined <name> — the same public appears in two modules.

Page A.7

Appendix A: Messages

over 100 arguments — BIND only allows 100 arguments, including arguments
in -F files.

over 64K code — a Small Case program has over 64K of code. See the
description of BIND overlay support.

over 64K data — a Small Case program has over 64K of data. This is not
supported. You will have to move some data to locals or use overlays.

over 300 modules — only 300 modules can be linked together. The supplied
library only contains about 60 modules. '

too many filenames — there are only 2000 bytes reserved for all filenames.
too many labels in <name> — a module in the named file had over 1000 labels.

too many total PUBLICS in <name> — symbol table has overflowed. The
named file was being read when the overflow occurred.

BIND Warning Messages

undefined PUBLIC - <name> — the name is referenced, but not defined in any
module. BIND will complete and the resulting .EXE module may execute as
long as the undefined PUBLICs are not referenced. If they are referenced,
then the result is undefined.

Page A.8

Appendix A: Messages

C88 Messages

Banner and Termination Messages

>C88 Compiler V3.1 Copyright Mark DeSmet 1982-1988
end of C68 001A code 0012 data 1% utilization

OR

>C88 Compiler V3.1 Copyright Mark DeSmet 1982-1988
(various error messages)

Number of Warnin(js = 2 Number of Errors =5

The first form of termination means the compilation was successful. The ‘code’
number is in hex and tells how many bytes of code were produced. The 'data’
number is similar and tells how many bytes of data were produced. The utilization
percentage is the worst case of a number of compiler limits. If it nears 100% it
usually means that the largest procedure should be broken into smaller procedures.

The second form means the compilation failed. Error messages are explained in the
following section. If any errors were detected, the compiler will stop trying to
generate code and will stop as soon as all the source has been read. This syntax
check' mode is fast and allows the programmer to correct the program with a
minimum of delay. If only warnings are detected, but no errors, the compilation
will end normally and produce a .O file.

C88 produces four categories of messages: fatal errors, errors, warnings and errors
detected by the assembler. Fatal errors are usually caused by I/O errors but
compiler errors are also in this category. When a fatal error is detected, the
compiler will print a message and quit. Errors are caused by syntax errors. If C88
is invoked from SEE, it returns to SEE upon the first error, otherwise it reports all
such errors and then quits. Warnings are produced by correctable errors and the
compiler continues. Since the compiler only uses ASM88 as pass 3 if the -a option
or the #asm option is used, assembler detected errors are possible but rare. When
they occur, the object module will not be usable.

It is easy to tell the category of an error. After a fatal error, the compiler stops

without printing a termination message. Errors and warnings have a distinctive
format which includes the word 'error' or 'warning'. Assembler errors print the
assembler line that was found offensive.

Page A.9

Appendix A: Messages

(88 Fatal Frror Messages

The pass 2 fatal errors like 'bad expression' are compiler errors, but the error is
usually caused by missing the problem in pass 1 and printing a reasonable message.
If you get one of these errors, please send your program to C Ware, but you can
probably find and eliminate the statement that caused the problem. Don't be
frightened by seeing these errors listed; you will probably never see any of them.
bad expression — this indicates a compiler error. Printed by pass 2.
bad GOTO target — attempt to goto something other than a label.
break/case/continue/default not in switch — a case or default statement must
be within a switch. A break statement must be in a while, do...while, for, or
switch. A continue statement must be in a while, do...while, or for statement.
cannot address — illegal use of ‘&' operator. Printed in pass 2.
cannot close <file> — the file could not be closed. An /O error occurred.
cannot create <file> — the named file could not be created. The name is a
temporary name or the name of the object or assembler file. This message
usually means the drive is full (see "T" option).

cannot open <file> — the named source or include file could not be found.

cannot read <file> — the named file could not be read. Usually means an I/O
error was detected. '

cannot unlink <file> — the temporary could not be deleted. AnI/O error
occurred.

cannot write <file> — the named file could not be written. An 1/0 error was
detected. Usually means the disk drive is out of space.

error in register allocation — compiler error in pass 2.

divide by zero — a constant expression evaluated to a divide by zero. Should
never happen.

Page A.10

Appendix A: Messages

E option not valid from SEE — You have specified the E option on the C88
command line from SEE. Either remove the option, or exit SEE and run C88
from the command line prompt. :

function too big — a function is too big for the compiler. The "Utilization’
number reflects this limit so there is normally plenty of warning. The solution
is to break large procedures into smaller ones.

illegal initialization for <name> — only constant expressions and addresses

plus or minus constant expressions can be used in initialization and the
initialization must make sense. For example

int a=b+2;

this error is fatal because it is not discovered until pass 2.

no cases — a switch must have at least one case.

no input file — You must specify the name of the source file.

out of memory — the compiler ran out of symbol space. The 'utilization'
numbers wamn when a program is about to exceed this or any other compiler
lirnit. The compiler can use up to 100K, so adding memory may be a solution.
If not, the only remedy is the painful surgery required to reduce the total

number of externals and locals defined at one time.

pushed — compiier error in pass 2 code generation. It can be eliminated by
simplifying the expression.

stdin not a device — you have specified '-' as the filename, but stdin is not a
file (isatty () istrue). You must either redirect stdin, or use a pipe.

stuck <régister> — same as 'pushed’.

too many cases — currently, a switch statement can only contain 128 case
statements.

too many externals — the compiler currently has a limit of 500 static's or
extern's. ' B

too many fors/too many whiles — whiles, do-whiles, switches and for
statements can only be nested 10 deep.

Page A.11

Appendix A: Messages

C88 FError Messages

Errors are printed with the following format:

23 1f (1 < 99 $$ {
error:Need ()

Or, if the error was detected in an include file:

23 if (i < 99 s$3% {
file:<include file> error:Need ()

The number preceding the source line is the line number. To find the line , edit the
file and issue the command 'nnnJ' where nnn is the number of the reported line.

The '$$' shows how far into the line the compiler was before the error was detected.
For example, the '$$' will print immediately BEFORE an undefined variable.

If you get a lot of errors on a compile, don't panic. A trivial error probably caused
the compiler to become confused. Correct the first few errors and re-compile.

can't be first — the macro concatenation operator must occur between tokens.

#(#) can't be last — macro text must follow both the concatenation and stringify
operators. ' '

#asm option not on — a #asm directive is found without the extended keyword
switch on. Use the command line option px, or #pragma ex

#undef identifier not defined — the identifier has not been #define'd.
bad control — the directive following the # is unknown.
bad declaration — the declaration of a variable was illegal.

bad include — the #include must be followed by "name"” or <narhe>, or a macro
that evaluates into one of the previous two forms.

bad label — a colon is not preceded by a label name.

Page A.12

Appendix A: Messages

bad member declare — the declaration of a member is illegal.

bad member storage — an attempt was made to declare a member static or
external. - Members have the storage type of their struct or union.

bad parameter declare — an illegal declaration of an argument or the name of
the argument was spelled differently in the procedure heading and in the
declaration. - ' :

bad statement — illegal statement.

bad STRUCT declare — an error has occurred in a st ruct declaration.

cannot initialize extern — extern variables are defined, and possibly.
initialized, elsewhere. You can have both an extern declaration and

definition of a variable in the same source file.

cannot #undef predefined macros — the predefined macro names
(_FILE_, LINE_,..)cannotbe undefined.

cannot redefine predefined macros — the predefined macro names cannot be
redefined. ‘

case range option not on — a case cexpr .. cexpr was found and the extended
keywords option is off. Use the px command line option or #pragma ex.

defines too deep — #define may reference another, but there is a limit. When
#defines are expanded, the number of active #defines cannot exceed 32.

duplicate argument — an attempt was made to declare an argument twice.
duplicate enum — enum's names must be unique.
duplicate label — two labels have the same name.

EOF within comment beginning at line nnnn — end of file was found inside
a comment which began at line znnn . A '*/' is missing.

EOF in macro argument — end-of-file was found while evaluating a macro
argument. An unterminated comment or string is the most likely reason.

Page A.13

Appendix A: Messages

field needs constant — the size of a bit field must be a constant expression with a
value of 1 to 16.

illegal address — attempt to use the ‘&' (take address of) operator on something
that is not an lvalue. '&44' will generate this error. An address can only be
taken of a variable, procedure, string or label.

illegal arithmetic — the requested pointer arithmetic doesn't make sense.

illegal assignment — only a pointer, long, or constant can be assigned to a Large
Case pointer. Note: this is a pass 2 error — the -¢ (checkout option) must be
used to get the line number of the error. co :

illegal define — a #define has unmatched parentheses or the #define parameters
are illegally specified.

illegal double constant — a double ora float was specified using
hexadecimal notation and the result is not 8 or 4 bytes long.

illegal external declaration — caused both by an illegal data or procedure
declaration and improperly nested braces. If the line is supposed to be part of
a procedure (e.g. i=0;), the latter is the case. Verify that every '{' outside of a
comment or quoted string has a matching '}'. Note: a prior error may have
caused the compiler to lose track of a '{". »

illegal index — a pointer cannot be used as an array index

illegal indirection— something other than a pointer has been used as a pointer. |

include nesting too deep — includes can only be nested 20 deep -

illegal structure assignment — the two operands of an assignment operator are
not the same structure, or the same size.

illegal type — an invalid type specifier combination has been found.
illegal use of FLOAT — ﬂbéting point numbers cannot be used as pointers.

invalid digit-sequence in #line — the symbol following the #1ine directive
doesn't evaluate to a number.

Page A.14

Appendix A: Messages

invalid identifier in #ifdef/#ifndef — the symbol following the #ifdef/
#1fndef is not a vaild name (doesn't begin with a letter or underscore).

invalid identifier in #undef — the symbol following the #undef is not a vaild
name.

invalid identifier in defined() operator — the symbol following the
defined operator is not a vaild name.

invalid parameter — a parameter of a macro is not a valid name.

invalid string-literal in #line — the symbol following the digit-sequence in the
#line directive doesn't evaluate to a string literal.

line must be constant — a #line control must be followed by a decimal constant.
line too long — the maximum line length is 509 bytes.

macro buffer overflow — more than 1024 bytes of argument text, or more than
32 arguments were found.

member not in structure — the variable following a "." or ->' operator is not a
member of the st ruct or union that preceeded the operator.

missing n;n’ n(n, n)n, n[n, n]n’ u{u, n}n, n:u’ nln — the indicated "" character
is needed at this point. A multitude of errors can cause these messages. The
error might be fixed by inserting the indicated character where the '$$' prints,
but the item following the '$$' could be illegal. -

missing ' — a character constant (e.g. 'A’,'01") can only contain one or two
characters. :

missing argument — fewer arguments are supplied in a function call than were
specified in the function prototype, or the argument list of a call had two
adjacent commas.

missing arguments — a #define was defined with arguments but used without
arguments.

missing dimension — an array dimension was missing in an expression or
statement. Either int x[][]; or x[]=1;.

Page A.15

Appendix A: Messages

missing end of #asm — an #asm block was not ended with a #.

missing expression — an expression is needed here. An example of a missing
expression is i=;. :

missing operand — an operator without an operand was found. An example of a
missing operand is ++;

missing while — a 'do ... while' is missing the ending 'while'.
must have constant — C syntax requires a constant value at this point.

must return float — in a function declared as returning a double ora float,
the last statement is not a return floating-type .

must return structure — in a function declared as returning a structure
structure-type either the last statement is not a return stzucture-fype ora
return of something other than structure-type is found.

need () — the expression following an 'if' or 'switch'-or ‘while' was not
surrounded by parentheses.

need '{' for STRUCT initialization — the initial values used to initialize a
structure must be surrounded by braces.

need closing parenthesis — a macro parameter definition does not end in).

need constant — a 'case’ prefix must be followed by an integer constant
expression. '

need label — a goto must reference a label.

need lval — an lvalue is needed here. An lvalue is, roughly, something that can be
changed with an assignment. The statement: 2=4; will produce this error.

need member — the ".' or '->' operators were followed by something other than a
member name.

need structure — in id . member or id -> member id isnot a struct or
union, or a pointer to one. : B

Page A.16

Apperidix'A: Messages

not enough #include buffer space — DOS cannot allocate space for an .
#include file buffer Reduce RAM-disk size or remove TSR's to increase
available RAM.

not enough arguments — fewer argtlrhents are supplied ina function call than
were specified in the function prototype. : :

only STATIC and EXTERN allowed at this level —an attempt was made to
declare an 'auto’ outside of a procedure.

‘parameter must follow # — the macro stringify operator must be followed by a
macro parameter.

return lacks argument — if a function is declared as returning a value then
"return;" is illegal. Use "return 0;" if the value is unimportant.

sizeof operator not allowed in #if/#elif — sorry, this is an ANSI
requirement

sorry, must have dimension for locals — the comp1ler does not accept char
a[]={1,2,3}; and similar for auto variables. Declare the variable static or
include an explicit dimension.

sorry, no string initialization of AUTO — the compiler cannot accept char
a[]="abc"; and similar for auto variables. Declare the variable static if
possible, otherwise use _move.

strmg too long — a string cannot exceed 255 characters. Usually means that a
is missing. Use the string concatenation feature to create long strings.

too many arguments — more arguments are specified in a function call than
were specified in the function prototype.

undefined structure — a structure is referenced without being defined.

undefined variable — an unknown id was found as an argument to a function
call.

unknown control — the word followmg a'#' is not a control word. '#while’
would cause this error.

Page A.17

Appendix A: Messages

unmatched " — either the end of line or end of file was found in a string. This
usually means that a " is missing. If your string is too long for one line,
continue with a \ (backslash) at the end of a line and continue in column one of
the next. If you want a new line in a string, use \n.

wrong number of arguments — a macro was used was used with the wrong
number of arguments.

C88 Warning Messages

Warnings indicate a change in syntax (as in the case of structures), or suspicious- -
code that is probably OK.

argument type conversion — a function argument doesn't agree with the type of
the corresponding argument prototype. The argument is cast to the prototype.
This warning is usually supressed. Use the pw command line option or
¥pragma w : ‘

conflicting types — an external or static was declared twice with different types.
Usually caused by an include file declaring a variable incorrectly or by a
program such as:

main () {
char ch;

ch=zipit ();
}
char zipit (ch)
char ch; {

return ch;

}

the call of zipit implicitly declares it to be a function returning an intéger.
The line ‘char zipit(ch)' would be flagged as an error. The fix is to include:

char zipit ():

above the call so the function is declared correctly before use.

Page A.18 ‘

Appendix A: Messages

member not in structure — the member identified by struct.member or by
ptr->member is not a member of the specified structure. A {void *)
pointer will select any member of an anonymous structure.

must return float — a float or double fuiiction must end with a return statement
that returns a value.

Note: The following functions ends with an i £ statement

double x() {if (1) return 1.;}.

returns structure — the current function has been declared as returning a
structure. This is to warn you that the entire structure, and not a pointer to it,
is being returned. This warning is usually supressed. Use the pw command

line option or #pragma w

structure assignment — the structure named as a parameter will be pushed on
the stack rather than a pointer to the structure, as was the case in previous
releases. This warning is usually supressed. Use the pw command line option

or #pragma w y

undefined variable — the variable has not been defined. It is assumed to be an
auto int.

C88 ASMB8 Errors

In theory, any ASM88 error message can be produced by a C88 compile gone
bonkers but I have only seen the 'cannot write <name>' errors caused by lack of
disk space.

Page A.18-1 o

Appendix A: Messages

CLIST Messages

Banner and Termination Messages

CLIST v1l.3 (c) Mark DeSmet, 1982,83,84
end of CLIST '

CLIST Fatal ErrorMessages

- All messages indicate fatal errors. ‘CLIST prints the message, prints 'CLIST
abandoned' and quits.

cannot close <file> — I/O error occurred.

cannof creat <file> — I/O error or disk out of room.

cannot open <file> — the source file could not be found.

cannot read <file> — I/O error occurred.

cannot write <file> — I/O error or disk out of room.

no input file — no list of files followed CLIST on the invocation line.

out of memory — CLIST ran out of room. Break the list of files in two.

Page A.18-2

Appendix A: Messages

D88 Messages

* Control C * — The user typed control-C or control-break. If control-C is
typed while a user program is executing, the program cannot be restarted.

cannot open <filename> — Cannot open the named file for the List of
Quit-Initialize command.

cannot open xyzzy — The module containing the main () function was not
compiled with the -c switch.

cannot read <filename> — The named file could not be read. Probably an /O
error.

cannot repeat — Again can only follow Again, Display, List or Unassemble
commands.

illegal address — The & operator was applied to something not in memory, e.g.
&1. :

illegal assignment — An attempt to assign an expression to a constant was made.
Only memory references and register can be changed.

illegal command — The command letter is not vaild.

illegal operand — This is a catch-ali error; it just means that the expression
could not be parsed correctly.

illegal value — The break numbers are 1, 2, or 3.

~ invalid symbol — The name is not in the symbol table. Probably a typo or
missing O before a hex constant.

line not found — The line is unknown. Only executable lines have number
records. Other lines cannot be referenced by number. The file may not have
been compiled with the -C option. '

missing) missing] missing " missing ' — Unmatched bracketing
character. :

need a number — A line number contained something other than a digit. No
expressions are allowed.

Page A.19

Appendix A: Messages

normal end — The program being debugged executed an exit () call.

not in a C procedure — The Proc-step command can only be executed when the
debugger knows which procedure is being debugged. The Step command can
be used. -

some symbols lost — The .CHK is greater than 55K bytes. Recompile those

modules you don't wish to debug without the -¢ switch and rebind to reduce
the size of the .CHK file.

Page A.20

Appendix A: Messages

LIB88 Messages

Banner and Termination Messages:

Librarian for C88 and ASMS88 va2.1 {(c) Mark DeSmet 1982,83,84,85

~TOUPPER_
-ISDIGIT_

-ISALPHA_ ISUPPER_ ISLOWER _ ISSPACE_
ISALNUM_ ISASCII_ ISCNTRL ISPRINT
ISPUNCT_

-TOLOWER_ :

end of LIB8S8 12% utilization

The list of code pubhcs is only printed if the -P option is employed. A minus sign in
column one indicates the start of a new module.

LIB88 Fatal Error Messages
LIB88 prints the message, prints 'LIB88 abandoned' and quits.

bad argument <argument> — the option is illegal.

bad object file<name> — the object or library file contains an illegal record.
cannot close <file> — I/O error occurred. °

cannot creat <file> — /O error or disk out of room.

cannot open <file> — the object file could not be found.

cannot read <file> — /O error occurred. .

cannot write <file> — J/O error or disk out of room.

n(; input file — no list of files followed LIB88 on the invocation line.

over 100 arguments — LIB88 only allows 100 arguments, including arguments
in -F files.

over 300 modules — only 300 modules can be linked together The supplied
library only contains about 60 modules. ,

Page A.21

Appendix A: Messages

too many dependencies in <name> — there is a total of over 1500
dependencies between modules.

too rhany total PUBLICS in <name> — symbol table has overflowed. The
named file was being read when the overflow occurred.

(

LIB88 Warning Messages

warning: circular dependencies — two modules reference each other; this is
OK if the first is always included whenever the second one is. The -N (need)
option will kill this message. '

Page A.22

.

Appendix A: Messages

SEE Messages

Banner and Termination Messages

When the SEE editor reads in a file to edit, the menu line is replaced by the banner
message:

SEE (TM): Screen Editor V3.0: Copyright 1982-1987 Michael Ouye

When the editor is exited, the message line prints the message:

bye! <filenamg>

SEE Error and Status Messages

As commands are executed, the editor will display a number of status messages on
the message line:

#HH# characters — This message is displayed whenever a file is edited and when
the Quit command is invoked. It shows the number of characters contained by
the file.

bad command -— This message is printed when there is no command that
corresponds with the character typed.

bad tag name — This message is displayed when a letter besides A,B, C or D was
typed for a tag name.

.

can't find " <string>" — This message is dlsplayed when a request to find the
string fails.

can't write to file <filename> try again? (y/n) — An errct occurred while
attempting to write the file out to the disk. Type "Y' to try to write the file to
the same filename. Type 'N' to abort the attempt and use the Quit-Write
command to write the buffer out to a different file. .

hit a key to continue — This message is displayed during the List command to
mdlcate that the next screenfull of text should be displayed.

Page A.23

Appendix A: Messages

ignore the changes? (y/n) — This message is printed when the memory buffer
has been modified and not saved to disk and the buffer is about to be
reinitialized with the Quit-Initialize command or the editor is about to be
exited with the Quit-Exit command. Type 'Y to continue the command, or N’
to abort the command.

no input file — This message is printed when the Update or BAKup commands
are executed but no file was specified on the command line. Use the
Quit-Write command to write the buffer out to the disk.

reading file: <filename> ... — This message appears whenever a file is read
into memory. The completion status of the read operation is appended to the
end of the message. If everything goes well, the word "completed” will be
appended to the end of the message. Otherwise, the editor will append the
string "can't read file" if an error occurred while attempting to read the file.

recording Macro F#, use Macro key to finish recording — This message

is continually displayed as long as a Macro is being recorded. To end the
Macro and the message, reinvoke the Macro command by typing the letter 'M".

Page A.24

Appendix B

The ASMS88 Assembly Language

Identifiers
Constants
Expressions
Registers
General Registers
Byte Registers
Segment Registers
Addressing Modes
8086 Flags
Address Expressions
Address Typing
Comments

Assembler Direectives

Reserving Storage

. Differences between ASM86 and ASM88

8086 Instructions

Elements of Instructions

Instructions

8087
Coatrol Word
Status Word
Tag Word
Condition Codes

8087 Instructions

B.1

B.5

w W oW W oW
©w 0 N o

oo

W wEwwww W5w
N Db
ALG A Y

~1

Appendix B: The ASM88 Assembly Language

Identifiers

Identifiers must start with a letter (A-Z, a-z, _), may contain digits, and have'a
maximum length of 31 characters. Upper and lower case letters are distinct so
ABC, abc and Abc are three distinct identifiers.

Constants
Constants are binary, octal, decimal, hex, floating point, or string.
Binary constant: ddddb or ddddB where d is 0 or 1.

Octal constant; ddddo or ddddO or ddddqg or ddddQ where d is between 0
and 7. .

Decimal constant: {-]ddddd where d is between 0 and 9.
Hex constant: ddddh or ddddH whered is0to9,atof,or AtoF.
Floating constant: [~)ddd([.ddd] [[+]-1Edd] where d is between 0 and 9.

String constant: 'dddd' whered is \n or \N forLF, \t or \'T for TAB, " for
- the single quote, \ooo where the ooo must be octal digits and
the result is the corresponding character, or any other
character.

After a DD (define double-word) mnemonic, constants that contain a period or 'E'
exponent are single precision floating point. Other constants are signed four byte
integers. After a DQ (define quad-word) mnemonic, constants are double
precision floating point. A string constant after DB may have up to 80 characters.
In any other place, constant expressions are allowed and the result has a range of 0
to 65535. There is no warning on overflow.

Page B.1

Appendix B: The ASM88 Assembly Language

Expressions

All expressions operate on unsigned 16 bit constants. There is no warning when
overflow occurs. Caution: multiplying or dividing negative constants will not give
the expected results. -3/-1 is not 3.

The operators are listed in order of precedence.

& binary and.

== = equality test and inequality test. Result is O (false) or
1 (true).

+ - plus and minus.

* / multiply and divide.

& offset + - ! ~ (& and offset are the same). plus minus not exclusive-
or.

Registers

The 8086 has eight fairly general purpose registers and four segment registers. All
- registers are 16 bits wide.

G.Qn;mlxggimu

The following registers can be used in arithmetic or whatever but all have some
specialized use.

AX ‘Some instructions have shorter forms using AX so AX is usually heavily
used as an accumulator. MUL and DIV require AX. IN and out use AX.
BX Used for addressing or for general purposes.
CX Used by LOOP and JCXZ. Also used to contain a shift count.
DX Used by MUL and DIV. Also used for variable port IN and OUT.

SI Used for addressing and string instructions.
DI Used for addressmg and string instructions.
BP Used as a stack pointer to access locals and arguments.
Caution: C programs require BP to be preserved across calls.
SP The stack pointer.

Used by CALL and RET. Be very careful when manipulating SP.

Page B.2

Appendix B: The ASM88 Assembly Language

Byte Registers

Each byte in the first four general registers can be addressed separately.

AH is the high byte of AX, AL is the low byte. BX, CX, and DX are similar.
The byte registers are: AH, AL, BH, BL, CH, CL,, DH and DL.

Segment Registers
DS Points to the data segment. The initialization code makes DS address the

ES

SS

Cs

data in DSEG. All memory references that are not relative to BP and that
do not include an explicit segment register override, refer to the segment
addressed by DS. .

Points to additional data segment. C only uses ES when doing a move.
The string instructions (movsb,cmpsb etc.) implicitly reference ES:[DI}
for the target. ES may be changed by any routine and is generally used to
address data outside of DSEG and CSEG.

Points to stack segment. C initialization sets SS to DS. This equivalence is
important for C programs so that they can create pointers to arguments or
locals which are on the stack. When it is necessary to change SS, a load of
SP must immediately follow.

The code segment. CS is set to CSEG by initialization.

Addressing Modes

Only certain registers can be used to reference memory. The following are the
permissible combinations.

[BX+SI+displacement]
[BX+DI+displacement]
[BP+SI+displacement]
[BP+DI+displacement]
[SI+displacement]
{DI+displacement]
(BP+displacement]
[BX+displacement]
(displacement]

Names can be included in an address, e.g. blap [BX] . The offset of the name is
simply added to the displacement. '

Page B.3

Appendix B: The ASM88 Assembly Language
Addresses that include BP are assumed to be SS relative. Other addresses are
assumed to be in DSEG, addressed by DS. To override this assumption, prefix an
address with 'DS:', 'ES:', 'SS:', or 'CS:". The assembler automatically provides the
prefix necessary for variables declared in CSEG.

Sample Addresses

hello db 'Hello',0

save dw 0
again: mov save, 99 . ;moves 99 to save
mov hello+3,'p’ ;changes 'Hello' to 'Helpo'
mov bx,4 ;sets bx to 4
mov - hello[bx],'!’ ;changes 'Helpo' to 'Help!'
mov ax,offset again ;moves offset of again to ax
mov ,ax ;jmoves ax to save
mov -ax,0 . isets ax to zero
mov es,ax) ;sets es to ax which is zero
mov ax,es: [bx+4] ;moves word at 0:8 to ax.
;offset of NMI interrupt.
8086 Flags

The flags are set 1) directly, 2) as side effects of arithmetic instructions, and 3) by
POPF (pop flags) and IRET (interrupt return). If you do a PUSHF (push flags)
followed by a POP, they will appear as a word with the following format:

| X1X1X|X|OF DF IF TR SF| ZF| X | AF| X | PF| X | CH|

CF carry flag. Set by arithmetic instructions to indicate unsigned overflow.
The carry flag is not set by INC and DEC. Can be set with STC and turned
off with CLC.

PF parity flag. Set by arithmetic instructions to indicate parity. On for zero

parity which means an even number of bits are on in the resuit.

auxiliary carry flag. Used in BCD arithmetic.

zero flag. Set to 1 or true if the result of arithmetic instruction is zero.

- sign flag. Set by arithmetic instructions if the sign (highest) bit is on.

trap flag. Set by debuggers to cause single stepping. Can only be set by

IRET. '

EEE

Page B.4

Appendix B: The ASM88 Assembly Language

IF interrupt enable flag. Set by STI, turned off by CLI and interrupt.

DF direction flag. Determines direction of string instructions. Set off, which
means increasing SI and DI, by CLD. Set on by STD.

OF overflow flag. Indicates signed overflow. True if the high order (sign) b1t
was changed by overflow.

Address Expressions
Address expressions follow normal 8086/88 rules. For example:

[234)]

DS:[0]

[BP+98]

variable
variable+22
variable({22]
variable[BP+22]
ES:variable[BP]+22

Address Typing

If an instruction includes a register, the type of the register determines the type of
the operation. If no register is present, the type of a variable is used. If neither is
present or the type of the variable is incorrect, the key-words BYTE, WORD,
DWORD, QWORD or TBYTE must be used. BYTE means the operand has a
length of one byte, WORD means two bytes, DWORD means four bytes, QWORD
means eight bytes and TBYTE means ten bytes.

Examples:
MOV [44],AX
MoV FOO,1
INC WORD ES: [BX]
FMUL QWORD [BP+22]
Comments

A non-quoted semi-colon causes the rest of a line to be ignored.

Page B.5

Appendix B: The ASMSS Assembly Language

Assembler Directives

Directives may be in either upper or lower case.

Cseg:
Dseg:
Eseg:

End:

Equate:

Even:

CSEG
DSEG
ESEG

. The DSEG directive indicates that Small Case data or Large Case static

data follows, the CSEG.directive indicates that code follows, and the
ESEG directive indicates that Large Case array or structure data
follow. The default is DSEG. DSEG and CSEG directives may be placed
anywhere but all code must follow a CSEG and all data must follow a
DSEG or an ESEG.

END

The END statement is optional and does nothing. _

identifier EQU expression

Equates are not evaluated until used so they may contain any sort of
expression or mnemonic.

LF equ OaH
PORT equ 201H

EVEN
Even forces even alignment by inserting a zero byte if required.

Words should be on even boundaries on the 8086 for improved
performance. On the 8088 it does not make any difference.

Page B.6

Include:
Offset:

Public:

Seg

Else:
Endif:

ELSE

Appendix B: The ASM88 Assembly Language

IF expression
ELSE
ENDIF

The control directives IF, ELSE, and END IF have been added to

support conditional assembly. Any symbolic name — set by an EQU
directive — can be used. For example:

IF LARGE CASE
mov ax, [bp+6]

mov ax, [bp+4]
ENDIF

INCLUDE "filename"

The indicated file is included in the source.
OFFSET identifier

OFFSET generates the offset of the variable.

PUBLIC identifier [:BYTE|WORD etc.] [,...]

Public declares that the listed variables are public. If an identifier is not
defined in the file, it is assumed to be external. This allows the same
file containing PUBLIC declarations to be included in all of the modules
of a system.

An identifier may be followed by a colon and the keyword BYTE,
WORD, DWORD, QWORD, or TBYTE. This allows a type to be associated
with an external variable. The placement of PUBLIC statements is
important. They must be in the same segment (DSEG or CSEG) as the
symbols they pame. In addition, the PUBLIC for a symbol must not
follow its definition.

SEG identifier

SEG is a Large Case directive which is similar to OFFSET except that it
generates the segment of the variable rather than the offset.

Page B.7

Appendix B: The ASM88 Assembly Language

Reserving Storage

Bytes, words, double-words and quad-words are declared with the DB, DW, DD
and DQ directives. '

[label[:}] DB | DW | DD | DQ value [,value]...

Values are truncated to bytes within DB, words within DW and double-words
within DD. The exception is the form

DB 'string of any length',O0

DD values may be binary (without a period or ‘E' exponent), single precision
floating point, or a Large Case pointer. DQ values are always floating point.

Storage can be reserved with RB and RW,
[label[:]1] RB or RW expression

Reserves the indicated number of bytes or words. They are initialized to zero at run
time. Caution: RB's and RW's are moved to high memory so they will not be
adjacent to the DB's, DW's, DD's, and DQ's they are declared next to. -

The Large Case @ dperator creates a long (4 byte) pointer in DSEG and returns its
offset. @ is normally used with LES to load a long (4 byte) pointer to a variable.

'Differences Between MASMS86 and ASMSS8.

1. Code Macros, MPL, SEGMENT e¢tc. are missing,. :

2. The public label MAIN_ must be declared somewhere in a program. It

identifies the initial entry point.

3. Jump optimization is performed. This means that the assembler assembles
JMP as a two byte jump when possible and that jump relative to an address
over 128 bytes away is turned into a jump around a jump.For example, a JZ to
a label more than 128 bytes away would become a JNZ around a JMP.

DQ's values are always floating point.
Eight byte binary is not supported. '
The word 'POINTER' (or 'PTR’) is not used. An anonymous variable is

'WORD [BX] instead if ' WORD PTR [BX]'. The mnemonics LCALL, LJMP
and LRET are used for the long forms of CALL, JMP and RET.

AR

Page B.8

Appendix B: The ASM88 Assembly Language

8086 Instructions

Elements of Instructions

The following is a description of the various types of operands:

reg Any general or byte register can be used.
breg Any byte register.

wreg Any general reglster.

segreg Any segment register.

m A memory reference.

regrm Any general register or memory reference
constant A constant expression.

label The label of a statement.

Instructions

AAA ASCII Adjust forAddition — changes the contents of AL to valid
unpacked decimal number; the high-order nybble is zero. Updates AF
and CF. OF, PF, SF, and ZF are undefined after execution.

AAD ASCII Adjust for Division— AH is multiplied by 10 and added to AL.
Updates PF, SF, and ZF. AF, CF, and OF are undefined after
execution.

AAM ASCII Adjust for Multiply — AL is divided by 10. The result goesin
AH and the remainder into AL. Updates PF, SF, and ZF. AF, CF, and
OF are undefined after execution.

AAS ASCII Adjﬁst for Subtraction. Repairs AL when AL is the result of
ASCII subtraction. Updates AF and CF. OF, PF, SF, and ZF are
undefined after execution.

ADC Adds the right operand and the carry bit to the left operand. Updates all

the flags.
ADC AX | AL,constant

ADC regrm,reg | constant
ADC reg,regrm

Page B9

ADD

CALL

CBW
CLC
CLD

Appendix B: The ASM88 Assembly Language

adc ax,ax

adc al,harry[bp+55]
adc word [bp+5],0
adc ax,ax

Adds the right operand to the left operand. Updates AF, CF, OF, PF,
SFand ZF.

ADD AX | AL,constant
ADD regrm,reg | constant
ADD reg,regrm

add ' ax,ax
add al,harry{bp+55]
add word {[bp+5],0

Logically "and"s the right operand to the left operand. Updates CF,
OF, PF, SF, and ZF. AF is undefined after execution.

AND AX| AL,constant

AND regrm,reg | constant

AND reg,regrm

and ak,dx

and al,harry(bp+55]

and word [bp+5],0FH

Pushes the address of the next instruction and jmps to the indicated
address. Call's can be direct to a label or indirect through a word
register or a word in memory. No flags are affected.

CALL label | regrm

call laba

call bx

call word es: [bx]

sign extend AL into AX. No flags are affected.

clear carry flag.

clear direction flag.

Page B.10 |

CLI
CMC
CMP

CMPSB
CMPSW

CWD
DAA

DAS

DEC

DIV

Appendix B: The ASM88 Assembly Language

clear interrupt enable flag. Disables interrupts.
complement carry flag.
Compares operands. All flags are affected.

CMP AX| AL,constant
CMP reg,regrm

cmp ax,ax
cmp al,harry[bp+55]
cmp word [bp+5],0

compare byte at DS:SI TO ES:DI. Increment SI and DL
compare word at DS:SI to ES:DI. Add 2 to SI and DL

If the direction flag is on, registers are decremented instead of
incremented. These instructions are usually used with a REP, REPZ or
REPNZ prefix. All flags are affected.

sign extend AX into DX:AX. No flags are affected.

Decimal Adjust for Addition. Adjusts AL after packed addition.
Updates AF, CF, PF, SF, and ZF. OF is undefined after execution.

Decimal Adjust for Subtraction. Adjusts AL after packed subtraction.
Updates AF, CF, PF, SF, and ZF. OF is unidefined after execution.

Decrements the operand. Updates AF, OF, PF, SF, and ZF.

DEC wreg | regrm

dec di
dec bl
dec chr

Divide AX by byte operand with result in AL and remainder in AH or
divide DX:AX by word operand with result in AX and remainder in
DX. AF, CF, OF, PF, SF, and ZF are undefined after execution.

DIV regrm

div cx

Page B.11

ESC

IDIV

IMUL

INC

INT

Appendix B: The ASM88 Assembly Language

triggers the 8087. If there is no 8087, this instruction should not be
used. The constant/8 is added to the esc instruction. The constant mod 8
is the middle 3 bits of the r/m. No flags are affected.

ESC constant,rm

stops the processor. The processor stops until an external interrupt
occurs. No flags are affected.

Integer divide AX by byte operand with result in AL and remainder in
AH or integer divide DX:AX by word operand with result in AX and
remainder in DX. AF, CF, OF, PF, SF, and ZF are undefined after
execution.

IDIV regrm

Integer multiply AL by byte operand with result in AX or integer
multiply AX by word operand with result in DX:AX. Updates CF and
OF. AF, PF, SF, and ZF are undefined after execution.

IMUL regrm

input from a port into AL or AX. A constant port must be in the range
0 to 255. The use of DX for port allows addressing all 65535 ports. No
flags are affected.

IN AL | AX,constant
IN AL | AX,DX

in al, 44
in ax,dx

Increment the operand. Updates AF, OF, PF, SF, and ZF. -
INC wreg | regrm

inc di
inc chr

cause a software interrupt. The int instruction causes the execution of
the associated interrupt routine. Interrupts.are the usual way to call the
operating system from the assembler. An interrupt pushes the flags,
pushes CS, pushes IP disables interrupts and LIMP's to the address at
0:interrupt number times 4. The constant must be in the range 0 to 255.

Page B.12

INTO

IRET

JA/NBE
JAE/NB
JB/NAE
JBE/NA
JC
JCXZ
JE/Z
JG/NLE
JGE/NL
JL/NGE
JLE/NG
JMP
JNC
JNE/NZ
JNO
JNS
JNP/PO
JO

- JP/PE
JS

The words 'above' and 'below' refer to unsigned comparisons. The words 'greater

Appendix B: The ASM88 Assembly Language

Interrupt 3 generates a one byte instruction. Debuggers use interrupt 3
for breakpoints. A program run under DEBUG can use an 'int 3' to
call the debugger. Updates IF and TF.

INT constant
int OC1lH
int 3

interrupt on overflow. Cause an interrupt 4 if the overflow bit is sét.
No flags are affected.

return from an interrupt. Flags are restored from stack.

jump on above/not below or equal.
jump on above or equal/not below.
jump on below/not above or equal.
jump on below or equal/not above.
jump on carry.

jump if CX is not equal to zero.

jump on equal/zero.

jump on greater/not less than or equal.
jump on greater than or equal/not less.
jump on less/not greater than or equal.
jump on less or equal to/not greater.
jump unconditionally.

jump on not carry.

jump on not equal/not zero,

jump on not overflow.

jump on not sign (positive).

jump on not parity/parity odd.

jump on overflow.

jump on parity/parity equal.

jump on sign (negative).

and 'less’ refer to signed comparisons.

ASMB88 will turn a jump relative into the five byte equlvalent if the target is out of
range. No flags are affected.

Page B.13

LAHF

LCALL

LDS

'LEA

Appendix B: The ASM88 Assembly Language

Jmp's to a label will generate either the two or three byte form

depending upon the distance of the label. Jmp's can be direct to a label
or indirect through a word register or a word in memory.

JMP label | regrm

jmp laba

jmp bx

jmp word es: [bx]
jmp laba[bx]

load AH from flags. No flags are affected. The format of AH is:

ISF|ZF| X [AF| X |PF| X | CF)

long call. LCALL pushes the CS, pushes the instruction pointer, and
does a long jump indirect through memory. The memory must
contain two words: the new instruction pointer and the new CS. No
flags are affected.

LCALL rm

lcall laba[bx])

loads a register (usually an index register - BX,SI or DI) and DS. Itis
used to form a long pointer so that data outside of DSEG and CSEG
can be addressed. No flags are affected.

LDS wreg,regrm

1lds bx,var&

loads the offset of the referenced memory location into a register. No
flags are affected.

LEA wreg,rm
lea ax, [si+di+44]

lea ax,vara
mov ax,offset vara ; same effect as above

Page B.14

LES

LJMP

LOCK

LODSB
LODSW

Appendix B: The ASM88 Assembly Language
loads a register (usually an index register - BX,SI or DI) and ES. Itis
used to form a long pointer so that data outside of DSEG and CSEG
can be addressed. No flags are affected.
LES wreg,regrm _

les di,vara

long jump. Ljmp's can only be indirect through memory. The
memory must contain two words: the new instruction pointer and the
new CS. No flags are affected.

LIMP label

Lock the bus. LOCK demands a bus lock for the following
instruction. Usually used with XCHG to implement semaphores. No
flags are affected.

LOCK instruction

mov al,l
lock xchg laba,al

load byte at DS:SI into AL. Increment SI.
load word at DS:SI into AX. Add 2 to SL

If the direction flag is on, registers are decremented instead of
incremented. These instructions are usually used with a REP, REPZ
or REPNZ prefix. No flags are affected.

lodsb
rep lodsw

Page B.15

LOOP
LOOPE/ZZ
LOOPNE/Z

LRET

Appendix B: The ASM88 Assembly Languagd

decrement CX and jump if CX not equal to zero.
decrement CX and jump if CX not zero and the zero flag is set.
decrement CX and jump if CX not zero and the zero flag is cleared.

LOOP, LOOPZ all decrement CX, check it for zero and if not zero,
do the jump. LOOPZ and LOOPNZ also check the zero flag. No
flags are affected.

LOOP label
LOOPE/Z label
LOQPNE/Z label

perform a long return. Assumes the procedure was called with an
LCALL. Both the instruction pointer and the new CS must be on the

- stack. The optional constant is added to SP after the return address is

MOV

removed. Languages other than C use this to remove parameters
from the stack. C has the caller remove parameters so that a variable
number of parameters can be supported. No flags are affected. -

LRET | constant

The contents of the right operand are moved to the left operand. No
flags are affected.

MOV segreg,regrm
MOV regrm,segreg | reg
MOV reg,constant | regrm
MOV rm,constant

mov ax,bx
mov cx,ds
mov es,cx
mov vara,ax
mov si,vara

- mov bl,varb[si+di}

Page B.16

MOVSB
MOVSW

MUL

NEG

NOP
NOT

OR

Appendix B: The ASM88 Assembly Language

move byte from DS:SI to ES:DI. Increment/decrement SI and DI
move word from DS:SI to ES:DI. Add/subtract 2 to/from SI and DI.

If the direction flag is on, registers are decremented instead of
incremented. These instructions are usually used with a REP, REPZ
or REPNZ prefix. No flags are affected.

movsb
rep mMoOvsw

Muitiply AL by byte operand with result in AX or multiply AX by
word operand with result in DX:AX. Updates CF and OF. AF,PF,
SF, and ZF are undefined after execution.

MUL regrm

mul CX
mul vara

Negate the operand. Updates AF,CF, OF, PF, SF, and ZF.
NEG regmm

neg ax
neg vara

do nothing in three cycles. No flags are affected.
Invert the bits of the operand. No flags are affected.
NOT regmm |

not ax

logical or of the operands. Updates CF, OF, PF, SF, and ZF. AF is
undefined after execution.

OR AX| AL, constant .
OR regmm,constant | reg
OR reg,regrm

or ax, ax
or al,harry(bp+55]

Page B.17

ouT

POP

POPF
PUSH

PUSHF
RCL

RCR

Appendix B: The ASM88 Assembly Language

Output a byte or word to a port. A constant port must be in the range
0 to 255. The use of DX for port allows addressing all 65535 ports.
No flags are affected.

OUT constant,AL | AX
OUT DX,AL| AX

out dx,ax
out 33,al

The word contents of SS:SP are moved to the operand and the stack
pointer is incremented by 2. CS cannot be popped as this would kill
the system. No flags are affected.

POP wreg | regrm | segreg

pop ax

pop total .

pop word es: [bx]

The flags are popped off of the stack.

Two is subtracted from SP and the word operand is moved to SS:SP.
No flags are affected.

PUSH wreg | regrm | segreg

push ax
push total

The flags are pushed onto the stack. No flags are affected.

rotate left through carry. The carry bit ends up as the new low bit
and the high bit becomes the carry bit. Updates CF and OF.

RCL regrm,1 | CL

rotate right through carry. The carry bit ends up as the new high bit

“and the low bit becomes the carry bit. Updates CF and OF.

RCR regrm,1 |CL

Page B.18

et

REP
REPZ

REPNZ

RET

ROL

ROR

SAHF

Appendix B: The ASM88 Assembly Language

decrement CX on each iteration and continue while not zero. ,
decrement CX on each iteration and continue while CX is not zero
and the zero flag is on.

decrement CX on each iteration and continue while CX is not zero
and the zero flag is off.

These prefixes can only be used with the string instructions; they -
cause the string instruction to be repeated. No flags are affected.

REP instruction .
REPZ instruction
REPNZ instruction

rep movsb
repz stosw

Return from a call. Only the instruction pointer is on the stack. The
optional constant is added to SP after the return address is removed.
Languages other than C use this to remove parameters from the stack.
C has the caller remove parameters so that a variable number of
parameters can be supported. No flags are affected.

RET |constant —
ret S
ret

rotate left. The high bit ends up in carry and as the new low bit.
Updates CF and OF.

ROL regmm,1|CL

rotate right. The low bit ends up in carry and as the new high bit.
Updates CF and OF.

ROR regm,1 |CL

New flags are loaded from AH. Updates AF, CF, PF, SF, and ZF.
The format of AH is: .

[SFIZF] X [AF] X [PF] X | CF|

Page B.19

SAL
SHL

SAR

-SBB

SCASB
SCASW

SHR

Appendix B: The ASM88 Assembly Language

shift arithmetic left. The high bit goes to carry and the new low bit
becomes zero.
shift left. The high bit goes to carry and the new low bit becomes zero.

Updates CF, OF, PF, SF, and ZF. AF is undefined after execution.

SAL regm,1 |CL
SHL regmm,1|CL

shift arithmetic right. The low bit becomes the carry bit, the high bit is
left alone (i.e. the sign remains the same). Updates CF, OF, PF, SF, and
ZF. AF is undefined after execution.

SAR regrm,1 |CL

Subtract the right operand and the carry bit from the left operand.
Updates AF, CF, OF, PF, SF, and ZF.

SBB AX| AL,constant
SBB regrm,constant | reg
SBB reg,regrm:>:nl.

.sbb ax,ax

sbb al,harry({bp+55]
sbb word [bp+5],0
sbb ax,ax

compare AL to byte at ES: DI Increment DI
compare AX to word at ES:DI. Add 2 to DI.

If the direction flag is on, registers are decremented instead of
incremented. These instructions are usually used with a REP, REPZ or
REPNZ prefix. Updates AF, CF, OF, PF, SF, and ZF.

shift right. The low bit goes to carry, the new high bit is zero. Updates
AF, CF, OF, PF, SF, and ZF.

SHR regrm,1|CL
shr al,l

mov <cl,4
shr wvara,cl

Page B20

STC
STD
STI

STOSB
STOSW

SUB

TEST

WAIT

Appendix B: The ASM88 Assembly Language
set the carry flag.

set the direction flag.
set interrupts enabled.

store AL at ES:DI. Increment DI.
store AX at ES:DI. Add 2to DI.

If the direction flag is on, registers are decremented instead of
incremented. These instructions are usually used with a REP, REPZ or
REPNZ prefix. No flags are affected. '

Subtracts the right operand from the left operaxid. Updates AF, CF,
OF, PF, SF and ZF.

SUB AX | AL,constant
SUB regrm,reg | constant:
SUB reg,regrm

sub ax,ax
sub al,harry[bp+55] .
sub word (bp+5],0

logically ands the operands. The operands are unchanged. Updates CF,
OF, PF, SF, and ZF. AF is undefined after execution.

TEST reg,constant | regrm
TEST ax,constant
TEST regrm,constant | reg

test al,l
test ax,80h
test chr,44h
test ax,vara
test vara,ax

halts the processor until the 8087 is ready for an instruction. No flags
are affected. : '

Page B21

XCHG

XLAT

XOR

Appendix B: The ASM88 Assembly Language

The contents of the two operands are exchanged. XCHG is often used
to implement semaphores. No flags are affected.

XCHG AXreg
XCHG reg,regrm
XCHG regrm,reg

xchg ax,bx
xchg al,ah
xchg vara,si

Move the contents of the byte at BX+AL into AL. No flags are
affected.

XLAT

Logically "exclusive or"s the right operand to the left operand.
Updates CF, OF, PF, SF, XOR ZF. AF is undefined after execution.
XOR AX | AL,constant

XOR regrm,reg | constant

XOR reg,regrm

xor ax,dx

xor al,harry[bp+55]
xor word {bp+5],0FH

Page B22

Appendix B: The ASM88 Assembly Language
8087 |

The 8087 is the numerics co-processor for the 8086 and 8088. It extends the 8086 -
architecture by adding instructions for fast and accurate floating point operations.
Adding an 8087 to an IBM PC or other 8088 or 8086 based computer that has
provision for an 8087 is usually as simple as purchasing the chip and plugging it in.

The 8087 contains an eight element stack. The stack top is referred to as 'ST'.
Other elements are referred to as 'ST(i)' where i is between 0 and 7 and is the index
of the element. ST(O) is the same as ST. The usual use of the floating point stack is
to push two elements and then do a binary operation on them but there are several
variations on instruction types. Each element of the stack is maintained as an 80 bit
extended precision value. The extra precision minimizes round off errors.

The 8087 context includes both the floating point stack and three status registers.
The entire context, as saved by FSAVE and restored by FRSTOR is:

control word
status word
tag word
bits 0 to 15 of IP
IP 19-16 {O]opcode
bits 0 to 15 of OP
OP 19-16 | zeros
bits 0 to 15 of ST
bits 16 to 31 of ST
bits 32to 47 of ST

bits 48 to 63 of ST
S| exponent of ST
ST(1), same as ST

ST(7), same as ST

.~ PageB23

Appendix B: The ASM88 Assembly Language

IP stands for instruction pointer and is the 20 bit address of the last instruction. OP
is the 20 bit address of the last operand referenced. S is the sign bit.

The portion of the state other than the eight stack elements is called the environment
and can be loaded with FLDENYV and stored with FSTENV.

Control Word

The control word can be loaded with FLDCW and stored with FSTCW and has the
following format:

[XTX[XJIC] RC | PC Jien] X [PMJUM[OM[ZM]DM[IM |

X reserved.
IC infinity control. 0 is projective which is default. 1 is affine.

RC rounding control. 0 is round to even (default). 1 is round down. 2 is round
up. 3 is truncate.

pPC prccxsxon control. 0 is single precmon, lis double precxsxon and 2 is full
preaslon which is default. . .

IEM interrupts enable mask. 0 means disabled which is default.

PM precision exception mask. All masks are default 1 which means apply the
chip default action. A zero means the exceptxon should trigger a user written
exception handler procedure.

UM underflow exception mask.

OM overflow exception mask.

ZM zero exception mask. |

DM denormalized exception mask.

IM invalid operation exception mask.

Page B24

Appendix B: The ASM88 Assembly Language

Status Word

The status word has the following format:

[BIC3[ST [c2|[Ci[CO[IR [X [PEJUEJOE[ZE[DETIE |

busy. One if 8087 is executing an instruction.

C C3,C2,C1,C0 are the completion codes. These are discussed below.
ST index of stack top element.

IR interrupt request. On if an 8087 interrﬁpt is pel_lding.

PE precision exception.

UE underflow exception.

OE overflow exception.

ZE zero divide exception.

DE denormalized exception.

IE invalid operation excepﬁon.

Tag Word |

The tag word has the following format:

tag

g [tag(6)[tag(5)[tag()[tag(3)tag(2)[tag(N)]tag(0)]

00 if valid,

01 if zero,

10 if not a number, infinity or unnormal, or
11 if empty. E

Page B25

Appendix B: The ASM88 Assembly Language
Condition Codes

Following an FCOM (compare), the condition codes are:

0 0 0 ST>source.
0 0 1 ST <source.
1 0 0 ST==source. .
1 1 1 the relationship is unknown.

The status word is arranged so the following code sequence may be used.

FSTSW STAT ;store the 8087 status word
FWAIT . ;wait for the store
. MoV AH,BYTE STAT+l ;load hi byte of status into AH.
SAHF ;load flags from AH.
JB... ;jump if ST < source
JBE... ;jump if ST <= source
JA. .. ;jump if ST > source
JAE... ;jump if ST >= source
JE... ;jump 1if ST == source
JNE. .. ;jump if ST != source.

The FXAM instruction shows if the stack top is an'infinity or unnormal.

0 0 0 O + unonormal.
0 0 0 1 + not a number.
0 0 1 0O - unnormal.

0 0 1 1 - NAN.

0 1 0 0 + normal.

0 1 0 1 + infinity.

0 1 1 O - normal.

0 1 1 1 - infinity.

1 0 0 0 + zero.

1 0 0 1 empty.

1 0 1 0 - Zero.

10 .1.1 empty. .
11 0 0 + denormalized.
1 1 0 1 empty.

1 1 1 0 - denormalized.
1 1 1 1 empty.

 Page B26

Appendix B: The ASM88 Assembly Language
8087 Instructions

w stands for 16 bit word, d stands for 32 bit short, q stands for 64 bit quad word and
i stands for an index in the range of 0 to 7.

F2XM1 ST =2**ST-1.
£2xml

FABS ST = absolute value(ST)
fabs

FADD add real.
fadd ;ST(1)=ST(1)+ST. pop stack.
fadd ST,ST (i)
fadd sT (i), ST
fadd d
fadd g

FADDP add real and pop the stack.

.. .. faddp ST(i),ST ,

FBLD push a BCD operand onto the stack.
fbld g

FBSTP store and pop a BCD value.
fbstp g .

FCHS change the sign of the stack top’
fchs

FCLEX clear 8087 exceptions. The 'N' form has no WAIT.
FNCLEX .

fclex
fnclex

Page B.27

FCOM

FCOMP

FCOMPP
FDECSTP

FDISI
.. FNDISI.

FDIV

Appendix B: The ASM88 Assembly Language

compare reals.

fcom ;compare ST to ST(1)
fcom ST (i) ;jcompare ST to ST (i)
fcom d ;compare ST to float
fcom g ;compare ST to double

compare real and pop stack.

fcomp ;compare ST to ST (1)
fcomp ST (1) ;compare ST to ST(i)
fcomp d ;compare ST to float
fcomp gq ;compare ST to double

compare real and pop stack twice.

fcompp ;compare ST : ST(1l). pop both.
increment stack top pointer.

fdecstp

disable interrupts. The ‘N’ form does not WAIT

fdisi

fndisi

real divide.

£div ;ST(1)=ST(1)/ST. pop stack.

fdiv ST, ST(i)
fdiv ST(i),ST

 fdiv d

- fdiv q.

FDIVP

real divide and pop the stack.

fdivp ST(i),ST

 Page B.28

Appendix B: The ASM88 Assembly Language
FDIVR real reverse divide.

fdivr 3ST(1)=ST/ST(1).
fdivr ST,ST (i)

fdivr ST (i),ST

fdivr d

fdivr q

FDIVRP real reverse divide and pop the stack.

"fdivrp ST(i),ST

FENI enable 8087 interrupts. The 'N' form does not WAIT.
FNENI

feni

fneni

FFREE free an 8087 stack element.
ffree ST (i)
FIADD add an integer to the top os stack

fiadd w : ,;ada'aﬁ §O86

word. 7
fiadd 4 :add a long

FICOM compare integer to top of stack.
ficom w ;compare to 8086 word
ficom d ~;compare to a long

- FICOMP compare integer to top of stack and pop.

ficomp w . ;compare to 8086 word

ficomp d ' ;compare to & long
FIDIV divide top of stack by integer..

fidiv w . ;divide by 8086 word

fidiv d ;jdivide by a long

Page B.29

FIDIVR

FILD

FIMUL

FINCSTP

FINIT
FNINIT

FIST

FISTP

FISUB

Appendix B: The ASM88 Assenibly Language
ST = integer/ ST.

fidivr w © ;divide 8086 word by ST
fidivr d ;divide a long by ST

push an integer.

fild w ’ ;load an 8086 word

fild d ;load a long

fild g ;load an 8 byte integer
multiply ST by an integer.

fimul w ;multiply by an 8086 word.
fimul d ;multiply by a long

increment the stack pointer.

fincstp

initialize the 8087. This instruction should precede any other 8087
instruction in a program. The 'N' form does not WAIT.

finit R T R R ViR
fninit

store an integer. e e

fist w . ;store an. 8086 word.
fist d ;store a long

store an integer and pop the stack. -

fistp w ;store an 8086 word.
fistp d ;store a long

subtract an integer from top of stack.

-~

fisub w ;subtract 8'(_)86v word =
fisub d ;subtract long

Ok g

Page B.30

Appendix B: The ASM88 Assembly Language
FISUBR ST = integer - ST.

fisubr w ;subtract ST from 8086 word
fisubr d ;subtract ST from long

FLD push a floating point value.
fld ST (i)
fld d
fld q
fld tbyte t
FLDCW load processor control word
lfldcw w
FLDENV load 8087 environment from memory.
fldenv env
FLDLG2 load log base 10 of 2.
. fldlg2
FLDLN2 load log base e of 2.
£1dln2
FLDL2E load logbase 2 of e.
U naze
FLDL2T loadlogbase20f10. ...--» & = - . R
£1d12t
FLDPI load PI.
fldpi |
FLDZ load zero.
| .f1dz

- Page B.31

Appendix B: The ASM88 Assembly Language

FLD1 load one.
£1d1
FMUL real multiply.
fmul ;ST (1)=ST (1) *ST. pop stack.
fmul ST, ST (i)
fmul ST(i),ST
fmul d
fmul q
FMULP multiply real and pop the stack.
fmﬁlp ST (i),ST
FNOP no operation. .
fnop
FPATAN partial arctangent.
fpatan

FPREM partial remainder. .

fprem
FPTAN partial tangent . y
| - fptan |
FRNDINT round to integer.
frndint

FRSTOR - ' restore 8087 state

frstor state

Page B.32

FSAVE
FNSAVE

FSCALE
FSQRT

FST

FSTCW
FNSTCW

FSTENV
FNSTENV

FSTP

Appendix B: The ASM88 Assembly Language
save entire 8087 state. The 'N' form does not WAIT.

fsave state
fnsave state

binary scale ST byl ST(1).
fscale

take square root of ST.
fsqgrt .

store real.

fst ST (1)

fst d

fst g

store control word. The 'N' form does not WAIT.

fstew w
fnstcw w

fstenv env
fnstenv env

store real and pop.
fstp ST (1) |

fstp d
fstp g

fstp tbyte t ‘ Lo R STT T

Page B.33

Fr.0h R

store the 8087 environment. '1'115"1\1": form does not WATT.

Appendix B: The ASM88 Assembly Language

FSTSW store status word. The 'N' form does not WAIT.
FNSTSW

fstsw w
fnstsw w

FSUB subtract real.
fsub ;ST(1)=ST(1)-ST. pop stack.
fsub ST,ST (i)
fsub ST (i), ST
fsub d
fsub g

FSUBP real subtract and pop the stack.
fsubp ST(i),ST

FSUBR - real reverse subtract.

 fsubr ;ST (1)=ST-ST(1).

fsubr ST,ST(i) -
fsubr ST(1),ST
fsubr d
fsubr g

FSUBRP real reverse subtract and pop the stack.
fsubrp ST(i),ST

FTIST compare ST to zero.

| ftst

FWAIT wait for 8087. Same as WAIT.
fwait

FXAM set condition codes from top of stack.

fxam

" Page B.34

FXCH

FXTRACT

FYL2X

FYL2XP1

Appendix B: The ASM88 Assembly Language

exchange stack elements.

fxch ;exchange ST and ST (1))
fxch ST (i)

decompose into exponent and significand. -

fxtract

ST(1) = ST(1) * log 2 ST.

fyl2x
ST(1) = ST(1) * log 2 (ST+1).

fyl2xpl

TS A

. s -, Page B35

