
met

Development Package

Published and Distributed by

C WARE CORPORATION
......'n.ftl"" ".. 1:'-..-=-

DeSmet
Development Package

Mark DeSmet

Published and Distributed by

C Ware Corporation
Sunnyvale, California

DeSmet C Development Package

Version 2.5 - October, 1985
Version 2.4 - October, 1984
Version 2.3 April, 1984

Published by: C Ware Corporation
O. Box C

Sunnyvale, CA 94087
USA
(408) 720-9696
Telex 358185 C WAR SNVLE

Copyright 1982, 1983, 1984, 1985 by DeSmet Software

All rights reserved. Printed in the United States of America. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means electronic, mechanical, photocopying, recording or
othexwise without prior written permission of the publisher.

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

The author has taken due care in preparing this book and the programs and data on
the electronic media accompanying this book including research, development, and
testing to ascertain their effectiveness. The author and the publisher make no
expressed or implied warranty of any kind with regard to these programs nor the
supplemental documentation in this book. In no event shall the author or C Ware
Corporation be liable for incidental or consequential damages in connection with or
arsing out of the furnishing, performance or use of any of these programs.

DeSmet C Development Package and SEE are Trademarks of C Ware Corporation.

CP/M-86 is a Trademark of Digital Research, Inc.
IBM is a Registered Trademark of International Business Machines.
MSDOS is a Trademark of Microsoft, Inc.
UNIX is a Trademark of Bell Laboratories.

Preface

This manual describes the DeSmet C Development Package for the IBM-
personal computer and the other MS-DOS based personal computers. If you are
unfamilar with the C language or UNIX, the book The Programming Language
by Brian Kernighan and Dennis Ritchie is available. If you plan on coding in
assembly language, it is advisable to get a manual on the Intel 8086 microproces or.
Books such as Intel's ASM86 Language Reference Manual or The 8086 Family

User s Guide are good choices. These manuals fully describe the architecture and
the instrction set of the 8086/8088 family of microprocessors.

We thank Mike Ouye (pronounced Oh' Way) for converting the manual into
MacWrite format, and both Glen Emigh 'and Pacific Data Works for proofreading
its many revisions.

We especially thank the following for repeatedly thowing their bodies in front of
and on top of the more explosive parts of the Version 2.5 Beta release Clopper
Almon, Dave Auslander, Glen Emigh, Panos Galidas, Scott Guthery, Bil Hunt,
George O'Neal Keyes II, Scott Lewis, Greg Mansfield, Bil Morrison, and Jim
Rome, as well as the folks at Krs Jamsa Software (Las Vegas, NV), Nanosoft (Ft.
Belvoir, VA), and Pacific Data Works (Santa Monica, CA).

DeSmet C Development Package, Version 2.5

Table of Contents

1. Introduction

2. Getting Stared
Distribution Disks
A Short Example2.3 Setting Up DOS 2. , 3.
2.3. RA Disk.
2.3.2 Completion Codes

3. The SEE Text Editor3.1 Introduction3.2 Getting Stared
1 Concepts

2.2 Starting the Editor
2.3 Inserting and Editing Text

3.2.4 Saving the File
5 Editing Existing Files

The Invocation Line
The Keyboard
3.4. 1 Cursor Movement Keys
3.4.2 Editing Keys
3.4.3 The DOS Key
Commands
Configuration

3.3
3.4

4. The C88 C Compiler
Introduction
Invocation
Examples4.4 The C88 Language
4.4. 1 Preprocessor directives
4.4.2 Data Types
4.4.3 Extensions.
4.4.4 Foxward References
4.4.5 Externs
4.4.6 Macros
4.4.7 Strngs

3.3
3.4

4.3
4.3
4.4

DeSmet C Development Package, Version 2.

5. The ASM88 8088/8086 Assembler
Introduction5.2 Invocation5.3 Examples

6. The BIN Object File Linker
Introduction
Invocation
Examples6.4 Space Considerations
Overlays
Librares

7. The LIB88 Object File Librarian
Introduction
Invocation7.3 Examples7.4 Librares

8. The D88 C Language Debugger8.1 Introduction
D88 Usage
Command Input.8.4 Expressions
D88 Commands.

9. Utility Programs9.1 Dump: Hex fie display program
CList: C program list utilty
Profie.

10. The CSTDIO.S Standard Library
10. Introduction
10. Names.
10. Program Initialization
10.4 Calling Conventions
10.5 Librar Conventions
10. Disk Input/Output Routines
10. Math Routines
10.8 IBM-PC Screen and Keyboard Interface
10. Alphabetical Function Index

5.1

6.3

6.4

8.3

9.1

10.
10.
10.
10.
10.4
10.
10.
10.
10.

DeSmet C Development Package, Version 2.5

Appendix A: Messages
A.1 SEE Messages

A.1.1 Baner and Termination Messages
Error and Status Messages

A.2 C88 Compiler Messages
A.2.1 Baner and Termination Messages
A.2. Messages

A.2. 1 C88 Fatal Errors
A.2. 2 C88 Errors
A.2.2.3 C88 Warings
A.2.2.4 ASM88 Detected Errors

Assembler Messages
A.3.1 Baner and Termination Messages
A.3. Messages Produced by ASM88

A.3. 1 Fatal Errors From ASM88 .
A.3. 2 Errors from ASM88 .

BIND Error Messages
A.4.1 Baner and Termination Messages
A.4. Warnings from BIND.
A.4.3 Fatal Errors from BIND
LIB88 Messages.

A.5.1 Baner and Termination Messages
Warings from LIB88 .

A.5.3 Fatal Errors from LIB88
D88 Messages
CLIST Messages.

1 Baner and Termination Messages
A. 7. Messages Produced by CLIST.

A.3

A.I
A.I
A.I

A.2
A.3
A.3
A.5
A.9
A.10
A.10
A.10
A.11

A.12
A.15
A.15
A.16
A.16
A.17
A.17

A.18
A.20
A.20

A.4

A.5

Appendix B: The ASM88 Assembly Language
Identifiers
ConstatsB.3 ExpressionsB.4 Addressing ModesB.5 8086 Flags

B:6 Address Expressions
Address Typing.
Comments
Assembler Directives

B.10 Reserving Storage
11 Differences Between Intel ASM86 and ASM88
12 8086 Instrctions

B . 12. 1 Elements of Instructions

B.3
B.4

DeSmet C Development Package, Version 2.

12.2 Instructions
Floating Point
B.13.1 Control Word
B.13.2 Status Word
B.13.3 Tag Word
B.13.4 Condition Codes.

13.5 8087 Instrctions

B.21
B.22
B.23
B.23
B.24
B.25

DeSmet C Development Package, Version 2.

1. Introduction
The DeSmet C Development Package is a set of programs and fies for developing
applications in the C programming language for the IBM-PC personal computer
and its clones. The programs provided in this package require a minimum of 128K
of Random Access Memory (RAM) and at least one disk drive. D88 requires 192K.
Most programs wil run under all versions of MS-DOS, l.xx, 2. , and 3.xx. The
pro gram execution profier requires the use of MS-DOS 2.x or later versions.

Lege nd: C=:) Pro g remsr: Fi I es

The diagram above outlines the interrelationships between some of the programs
which are provided.

Page 1.1

DeSmet C Development Package, Version 2.

SEE is a full-screen, command oriented text editor designed for program editing
rather than word processing. While SEE can edit any standand ASCII text fie, its
main purpose is to produce C (.C) and Assembler source fies (.

CLIST reads C source fies (.C) and produces a listing fie with a symbol
cross-reference.

C88 is the C compiler. It reads C source fies (.C) and produces either object fies
0) or assembler fies (.A). It supports the complete Kernighan and Ritchie C

language plus the UNIX V7 extensions structure assignment and parameter
passing, and enumerated types.

ASM88 is the 8086/8088 assembler. It reads assembler source files (.A) and
produces linkable object fies (.0).

BIND is the object fie linker. It reads object fies (. 0) and library fies S) and
produces an executable file (.EXE). BiND optionally produces the debugger
information fie (.CHK) and overlay fies (.OV).

Lm88 is the object fie libraran. It reads object fies (.0) and other librar files
S) and produces librar files (.S).

D88 is the C source-level symbolic debugger. It provides access to program
variables by name, breakpoints by function name and line number, and special
support for debugging interactive programs. Source code display and stepping by
source lines are also supported.

PROFILE is the C program execution profiler. It monitors the execution of the
application program and indicates where time is spent in the program.

CSTDIO.S is the Standard Library used by BIND to provide the Operating System
and machine-level functions supported by the C language. Two libraries are
provided in the development package, one that support the 8087 math coprocessor
directly (CSTDI07.S) and one that provides numeric support in software
(CSTDIO.S).

Page 1.2

DeSmet C Development Package, V2.5

2. Getting Started

First things first. Copy all of the fies from the distribution disks onto a set of
working floppy diskettes or hard disk. The package is J1 copy-protected so the
MS-DOS copy command can be used to copy the fies. The package is distrbuted on
two DOS 2 double-sided (360KB) diskettes. If your machine has single-sided
drives, or only supports DOS 1, the package is available on "flppies" (each side of
each diskette is formatted as a single-sided diskette and the diskette must be
physically flpped over to access the other side). The distrbution diskettes should
never be used, they should be kept as the backup copy of the package.

If the package is to be run on a system other than an IBM PC, XT, AT, PCjr or
PC-clone, the screen interface for SEE and D88 must be configured before they can
be used. See the notes in the fie CONFG.C on Disk #2 for configuration details.

1 Distribution Disks

The package is distributed on two 5 1/4 inch floppy diskettes, labeled Disk #1 and
Disk #2. If you requested "flppies , Disks #3 and #4 are on the back sides of Disk
#1 and #2, respectively. Disk #3 contains the rest of Disk #1 , while Disk #4
completes Disk #2.

Disk #1:
C88.EXE:
GEN.EXE:
ASM88.EXE:
SEE.EXE:
STDIO.
MATH.
BIN.EXE:
LIB88.EXE:
EXEC.O:
CSTDIO.

CSTDI07.

The first pass of the C compiler.
The second pass of the C compiler.
The assembler and thrd pass of the C compiler.
The full-screen editor.
Include fie for the Stadard I/O package.
Include file for the Stadard Math package.
The object fie linker.
The object fie libraian.

The ExecO and ChainO functions.
The standard C function librar with software

floating-point support.
The standard C function librar with 8087 support. To
use ths librar, rename it to CSTDIO.

Page 2.

Disk #2:
RA.COM:

PCIO.
BUF128.EXE:
BUF128.
DUMP.EXE:
DUMP.
LIFE.EXE:
LIFE.
BUGSLEXE:
LA TER.C:

CB.
CLIST.EXE
PROFILE.EXE:
PROFSTAR.EXE:
PROFEND.EXE:
COMPAR.EXE:
D88.EXE:

DeSmet C Development Package , V2.

RA Disk driver for DOS 2.0 and later operating
systems.
Source code for the PC screen functions.
128 byte type-ahead buffer program.
Source code for BUF128.EXE.
The hex file display utilty.
Source code for DUMP.EXE.
Full screen game of Life.
Source code for LIFE.EXE.
Arcade game (use 'BUGS! c ' for color displays).
Source code for a fie modification date checking
program.
Source code for a brace matching program.
The C listing and cross-reference utilty.
The program execution profier.
Used by PROFILE.EXE.
Used by PROFILE.EXE.
The source code comparson utilty.
The C source-level symbolic debugger.

Disk #2 also contains various object fies and configuration fies for generating the
SEE editor and D88 debugger for systems with displays other than the IBM PC.
CONFIG.C contains the display and keyboard dependent routines. See the
comments in the CONFIG.C fie for instrctions on customizing SEE and D88.

2. 2 A Short Example

This example shows the general method for creating executable programs with this
package. It assumes that the disk in the default drive, in this case drive A: , contains
the compiler (C88.EXE and GEN.EXE), the assembler (ASM88.EXE), the binder
(BIND.EXE), the standard library (CSTDIO.S) and the text editor (SEE.EXE).
The source code wil reside on drive B:.

Enter the example program with the SEE text editor. To start the SEE text editor
type:

see b : example.

Page 2.

DeSmet C Development Package, V2.

The screen wil look as follows:

Again Buffer Copy Delete Find -find Get Insert Jump --space--
---- reading file: b :example.c... -- new file 0 characters

Type the letter '1, or press the ' Ins ' key, to put the editor into Insert mode. Now
type in the following program:

main () (-:Ret::
-:Tab::printf (" %d
-:Tab::l-:Ret::
-:Esc::

plus %d %d\n

" ,

2+2) ; -:Ret;:

Note that the items oeTab:: , oeRet::, and oeEsc:: indicate the Tab , Return, and Esc
keys , respectively. The oeEsc:: wil terminate insert mode and return the editor to
command mode. The screen should now' appear as follows:

Page 2.

DeSmet C Development Package, V2.

Again Bufftr Copy Dtlttt Find -find Gtt Instrt Jump --spact--

mainO (
printf('Jd plus 'Jd is 'Jd\n

" ,

2+2);

Now that the program is entered, it must be saved to the disk. Since the name of the
fie was specified on the command line, just type the sequence of characters

, '

Q' for

Quit and' S' for Save-exit. This wil store the copy of the fie in memory onto the
disk and exit from the editor.

To compile the program just entered, type:

e88 b:example

and the computer wil display:

A) cBB b: ex amp I e
CBB Compiler U 2. (c) Mark DeSmet 19B2 19B3 , 1984 1985
end of C8B 001E code 0012 data 1. utilization

Page 2.4

DeSmet C Development Package, V25

If there were errors during the compilation, go back to the editor and make sure
that the program was entered correctly. (Note that the .C extension was not needed
on the fiename given to the compiler. When no extension is given, the compiler
automatically assumes .C as the extension, just as the assembler assumes .A and the
binder assumes .0).

Now it's time to bind (link) the program to the standard librar and create the
application program. Do this by typing:

bind b:example

The binder wil automatically search the CSTDIO.S library so it should not be
included in the command line. When the binder successfully links the program, the
screen should appear as follows:

A)cSS b:example
CSS Compi ler V 2.5 (c) Mark DeSmet. 1982 , 1983, 19S4, 1985
end of CSS 001E code 0012 dat.a 1. ut.i I izat.lon
A)bind b:example
Binder for CSS and ASNSS VI. 5 (c) Nark DeSmet 19S2-SS
end of BIND 8. ut.i I izat.lon

The application is now ready to run. Type:

b:example

and the computer should respond with:

Page 2.

DeSmet C Development Package, V2.5

c88 b:example
C88 Compi ler V 2.5 (c) Mark DeSmet 1982 , 1983 , 1984 1985
end of C88 00 IE code 0012 data ut i I i zat i on
bind b:example

Binder for C88 and ASM88 VI. 5 (c) Mark DeSmet 1982-85
end of BIND uti 1 ization

b: examp I e
2 plus 2 is 4

Don t worr if some of the utilzation numbers are different from those shown in
the example. These numbers wil vary depending on the system being used (i.e.
amount of memory, RA disk installed, etc.

3 Setting Up DOS 2. , 3.

, ...

For systems utilzing DOS 2.x or later versions of the operating systems, make sure
that the ASCII text fie CONFIG.SYS exists on your boot disk. If it doesn t exist
you can create it with SEE. The fie 1I contain the line:

FILES=20

since C88 supports 20 open fies - stdin, stdout, stderr, and 17 other fies. The
de.fult number of eight is insufficient for the BIND program. If there is enough
memory available, add the line:

BUFFERS=20

to improve fie performance in the operating system. 512 bytes are allocated for
each buffer specified.

1 RAM DISK

If you have a system with more than 256 kilobytes of memory, then the Ram Disk
drver RAM.COM can be used to create an extremely fast disk. To add a Ram Disk,

Page 2.

DeSmet C Development Package, V2.

copy the RAM. COM fie from the distribution diskette to the system disk and add
the line:

DEVICE=RAM.COM

to the CONFIG.SYS fie. The parameter, n, is a decimal number from 32 to 650
indicating the size of the Ram Disk. . The value is specified in units of one kilobyte
(1024).

Re-boot the system to install the Ram Disk. The drive letter used for this ' disk
drive ' is dependent on the configuration of the system. DOS wil install the Ram
Disk at the first free device " slot" . For an IBM PC with two floppies , this wil
probably be drive C:. For an XT, it wil probably be drive D:. Sanyo 550/5
reserves the first four slots for its floppies, so the Ram Disk is drive E:. To find
where DOS has installed the Ram Disk, use

chkdsk x:

where x takes on the values c, d,.... You wil get either a disk error, or a return
showing the size of the Ram Disk. Once you find it, the Ram Disk wil always be the
same until you add other device drivers before it in the CONFIG.SYS fie.

2 Completion Codes

The C88, ASM88 , BIND and LIB88 programs set the completion code to:
zero if no warnings or errors occurred,
one if warnings were issued, and
two if errors occurred.

Batch fies can take advantage of these values to stop execution or othexwise handle
these exceptional cases.

The batch fie CC.BA T listed below wil stop if C88 or BIN reports an error:

c88 %1
if errorlevel 1 goto stop
bind %
if error1evel 1 goto stop

:stop

More complicated development situations can be handled with the program LATER
which is supplied in source form in the fie LA TER.C. LATER takes a list of

Page 2.

DeSmet C Development Package, V2.

filenames as arguments. It sets the errorlevel to one if the lastfile does not exist or
if the last fie has an earlier modification date than any other fie in the list. It can
only be used on systems with a battery backup clock or where users are careful
about setting the date and time when the system is brought up. Assume a program is
composed of the fies moda.c, modb.c, modc.c and the include fie mod.h. The
following .BA T fie can be used to regenerate the program whenever a module
changes:

later moda. e mod. h moda. 0
if errorlevel 1 e88 moda
if errorlevel 1 goto stop
later modb. e mod. h modb.
if errorlevel 1 e88 modb
if errorlevel 1 goto stop
later mode. e mod. h mode. 0
if errorlevel 1 e88 mode
if errorlevel 1 goto stop
later moda. 0 modb. 0 mode. 0 mod. exe
if errorlevel 1 bind moda modb mode
:stop

omod

This provides a service similar to the UNIX MAKE program. Only those fies that
need to be compiled wil be compiled.

Page 2.

DeSmet C Development Package, V2.5

3. The SEE
TM

Text Editor

1 Introduction

SEE is a general purpose full-screen text editor designed for program entry rather
than word processing. It handles fies larger than memory and can edit two fies
simultaneously. Its macro facilty allows you to capture a series of keystrokes and
replay them to ease repetitive tasks. It also features automatic indentation and
brace/bracket/parenthesis matching to ease program entr.

SEE is shipped configured for the IBM-PC and its clones. SEE may be
reconfigured to run on other machines which support MS-DOS but have different
keyboard and/or screen interfaces than the IBM-PC (see Section 3.6).

Page 3.

DeSmet C Development Package, Version 2.

3.2. Getting Started

1 Concepts

SEE does not directly manipulate a fie on the disk. It brings a copy of the fie into
memory and performs all work on this internal copy. The fie on the disk is not
modified unti the copy in memory is stored on the disk. If the fie is larger than the
internal buffer area, SEE wil open "spil" fies to swap the edited text in and out of
memory. For this reason, you should not have any fies named SEETMP.

###,

where ### is a series of three digits (currently restricted to 000, 001, 002, 003, and
004).

Commands are executed by typing the first letter of the command displayed on the
menu line (the first line on the screen). For example, to execute the Delete
command, simply type the letter 'D' ; the case of the letter does not matter.

Whenever a:! of text is deleted with the Delete command, the text is placed in a
special area known as the copy buffer. Blocks selected with the Buffer command
are also placed in ths buffer. When the Copy command is used, the contents of this
buffer is inserted into the text at the cursor location. The copy buffer is maintained
as long as the editor is running and is shared by both fies (if two fies are being
edited). This is the mechanism used to move text from one location to another or
from one fie to another.

The cursor indicates the location where all action wil occur. It wil be in one of
three states: a double-bar cursor indicating command mode, a single-bar cursor
indicating Insert mode or a block cursor indicating Exchange mode. The cursor is
always visible on the screen. As the cursor is moved to an edge of the screen, the
screen wil scroll the text to keep the cursor in view, both vertically and
horizontally. For example, if the cursor is moved down when it is on the last line of
the screen, the screen wil be scrolled up one line to show the line the cursor is on.
Similarly, when the cursor is in the rightmost column of the screen and the cursor is
moved to the right (assuming the line has more characters not currently displayed
on the screen), the screen wil be scrolled to the left by 15 columns to show the new
location.

Page 3.

DeSmet C Development Package, Version 2.5

3.2.2 Staring the Editor

To star the editor to edit a new fie named ' ergo , simply type:

see ergo

and the computer should respond with the screen:

Again Buffer Copy Delete Find -find Get Insert Jump --space--
----- reading file: ergo ... -- new file 0 characters

The top line on the display is the menu line . This line displays the current mode of
the editor and the commands available at any given time. In this first screen, the
menu line contains the first set of commands available at the command level:

Again Buffer Copy Delete Find -find Get Insert Jump --space--

Hitting the space bar displays the second set of commands:

List Macro Other Put Quit Replace Set Tag Wrap Xchange --space--

Hitting the space bar again wil redisplay the first set of commands. The commands
are fully described in Section 3.5 of this manual. Each command may be executed
by typing the first letter of its menu item; for example, A for Again, B for Buffer,
etc. The case of the command letter is ni imJ?ortant.

The second line of the screen is used to display messages and status from the varous
commands and is naturally called the message line. The message "ergo... -- new

Page 3.

DeSmet C Development Package, Version 2.

file 0 characters" indicates that the file ergo has not been found and that the internal
fie buffer is empty.

3 Inserting and Editing Text

To insert text into the fie, we must enter Insert mode. Do this by either typing the
letter 'I to execute the insert command , or by pressing the Ins key. The screen
should now look as follows:

Insert: (cursor keys) , Esc to exit , Ins for Exchange
----- reading file: ergo ... -- new fie 0 characters

Note that the menu line has changed to indicate the types of actions, other than
inserting text, that may be performed. Any character now typed, except for one of
the special keys described in Section 4, wil now be inserted into the text at the
cursor location, just prior to the character that the cursor is on.

Now type in the lines:

These are a few lines ..Return::
of example text to shoe..Backspace::w..Return::
the editing capabilties of the SEE editor. ..Return::
..Esc::

Page 3.4

DeSmet C Development Package, Version 2.5

The screen should now look as follows:

Agein Buffer Copy Delete Find -find Get Insert Jump --spece--

These ere e few lines
of exempl e text to show
the editing cepebilities of the SEE editor.

Note that the symbols o:Return;: , o:Backspace;:, and o:Esc;: represent the use of the
return, backspace, tab, and Esc keys, respectively. The o:Return;: inserts a
carriage-return, line-feed (CRLF) sequence into the fie to begin anew line and the .
cursor moves down one line and to the left side of the screen. The o:Backspace;: key
deletes the character preceding the cursor. The o:Tab;: key inserts a tab character
into the fie which is expanded to the next tab stop. Tab stops, by default, are located
every four characters, however this value may be changed in the Set command. The
o:Esc;: key breaks the editor out of Insert mode and places it back in command
mode.

The cursor keys are used to move the cursor around the screen in small increments.
Press the up-arrow key twice to move the cursor up to the beginning of the second
line. Press the right-arrow key three times to move the cursor to the beginning of
the word 'example . Type the letter 'I to put the editor into Insert mode and type
the word 'some ' without the quotes and add a blan. Note that as each character is
typed, the rest of the line is "pushed" to the right. The screen should now look as
follows:

Page 3.

DeSmet C Development Package, Version 2.

Insert: (cursor keys) , Esc to exit , Ins for Exchange

These are a few lines
of some xample text to show
the edi t i ng cepabil it i es of the SEE editor.

Now hold down the control key (Ctrl) and press the right-arow key three times.
Note that the cursor jumps from one word to the next when using this combination
of keys. See Section 4 for full details on all of the special keys. Also note that the
editor does not have to be in command mode to use the cursor movement keys. Now
hit the Ins key to change from Insert mode to Exchange mode; the menu line wil
display Exchange instead of Insert. In Exchange mode, the character at the cursor is
ovexwritten by the new character rather than having the character inserted into the
fie. The only exception to this rule is when the cursor is positioned at the end of a
line, characters are inserted rather than overwriting the CRLF end-of- line
sequence. Exchange mode can also be entered from command mode by typing the
letter 'X' for Xchange. Type the word 'display ' and notice how the word ' show' is
ovexwritten with the new word 'display'. Press the Esc key to go back to command
mode. The screen should now look as follows:

Page 3.

DeSmet C Development Package, Version 2.

Again Buffer Copy Delete Find -find Get Insert Jump -- space--

These are a few lines
of some example text to display-
the editing capabilities of the SEE editor.

Press the Home key and note the location of the cursor. To delete this line, invoke
the Delete command by typing the letter ' , move the cursor down one line with
the down-arrow key, and type the letter 'D' again to complete the deletion (the Esc
key wil also work). The second line has been deleted and placed in the copy buffer.
Now type the letter 'e' to invoke the Copy command to retrieve the text that was
deleted. Type the letter 'C' again and a second copy of the line is inserted. The copy
buffer always contains the last Deleted o Buffered block of text. The screen should
now look as follows:

Again Buffer Copy Delete Find -find Get Insert Jump --space--

These are a few lines
Cf some example text to display
of some example text to display
the edi ti ng capabi I it i es of the SEE edi tor.

Page 3.

DeSmet C Development Package, Version 2.

To find the first occurrence of the word ' display , press the letter 'F' to invoke the
Find command. Type in the word 'display' (without the quotes) and type either Esc
or Return to begin the search. The cursor should now be positioned after the word
display ' on the second line. To replace the next occurrence of the word 'display
with the word 'show , press the letter 'R' to invoke the Replace command. Notice
that the previous search string 'display ' now appears on the message line. Since this
is the string to be replaced, simply press the Esc or Return key to select the string
(rather than retyping the string). Type in the strng ' show' and hit the Esc or Return
key to execute the command. Press the Home key twice to move the cursor to the
top of the screen. The sGreen should now appear as follows:

Again Buffer Copy Delete, Find -find Get Insert Jump --space--

Ihese are a few lines
of some example text to display
of some example text to show
the editing capabil i ti es of the SEE editor.

Another useful feature in SEE is its abilty to record a series of keystrokes,
command, cursor keys, etc. , and replay them on command. These recordings are
called macros. To create a macro, type 'M' to invoke the Macro command, type
R' to indicate that a recording is to be made, and select the function key (FI though
F8) that is to be used to invoke the macro. In this example, press the FI key. The
message line now displays the line:

recording Macro Fl, use Macro key to complete recording

This message wil be displayed after every command to indicate that a macro
recording is in progress. Now, any commands or special keys typed wil be

Page 3.

DeSmet C Development Package, Version 2.5

recorded into the macro unti the Macro command is executed once again. For this

example, execute the following commands:

I(gc:Esc c:control right.arrow

Macro Fl is now defined to insert the ' (g' character in front of each word.
execute the macro, press the F1 key. To execute the macro a fixed number of times,
say five times, type the number 5 and then the function key Fl. The macro is
executed five times. To execute the macro for the rest of the words in the fie, tye
in a large number or use the more convenient I' character to indicate the number
32767 , the largest number. Type I' and press the F1 key. The screen should now
appear as follows:

Ag6in Buffer Copy Delete Find -find Get Insert Jump --sp6ce--

&lThese &l6re &16 &lfew &llines
&lof &lsome &lex6mple <ext <o &ldispl6Y
&lof &lsome &lex6mple <ext <o &lshow
<he &ledi ti ng &lC6p6bil i ti es &lof <he &lSEE &ledi tor.
&1-

2.4 Saving the File

Recall that all of the editing was performed on the fie in memory. This copy of the
fie must be written out to the disk. Type the letter 'Q' to enter the Quit menu. The
choices under the Quit menu are:

BAKup Exit Initialize Save-exit Update Write

Each menu item is explained in detail in Section 5 under the Quit command. Press
the letter S' to save the memory copy of the fie to the disk fie named ' ergo' which
was entered at the beginng of this example. This selection wil also terminate the
editor.

Page 3.

DeSmet C Development Package, Version 2.5

2.5 Editing Existing Files

Now to edit the fie ergo again, simply type the line:

see ergo

The editor wil be loaded and wil attempt to load the fie ergo. If the fie was
loaded correctly, the screen should appear as follows:

Again Buffer Copy Delete Find -find Get Insert Jump
----- reading fi e: ergo ... 156 characters

These (gare (ga (gfew (glines
(gof (gsome (gexample (gtext (gto (gdisplay
(gof (g$ome (gexampl e (gtext (gto (gshow
(gthe (gediting (gcapabilities (gof (gthe (gSEE(geditor.

space--

Type 'Q' to select the Quit command and then type 'E' to exit from the editor
without writing the fie out, since nothing has changed.

You now have a basic understanding of how to edit fies with the SEE editor.
Practice editing other fies using the skils developed in this example. Don t be
afraid to experiment. Remember that as long as you don t write the fie back out to
the disk, the old copy is safe. When you are comfortable with these editing features
look though the rest of the manual to see what else can be done and experiment with
some new features.

Page 3.

DeSmet C Development Package, Version 2.5

3. The Invocation Line

There are a few different options available when staring the SEE editor. Invoking
SEE with the command line:

see

wil bring up the editor with an empty buffer and no fiename specified. To save the
fie to disk, use the Write option under the Quit command described in Section 5.

Invoking SEE with the command line:

see c:fiename::

wil have the editor load the fie c:fiename:: if it exists. c:fiename:: wil be used by
the Update and BAKup options in the Quit command. If the fie doesn t exist, SEE
wil act as if it existed but was a zero length fie. Note that the fie is not created
until it is written out to disk.

Invoking the editor with the command line:

see c:fienamel:: c:fiename2::

wil have the editor load the text from c:fienameb but wil write out the text to
c:fiename2::. c:ilenameb wil not be altered by the edit session.

Page 3.

DeSmet C Development Package, Version 2.

3.4. The Keyboard

This section describes the special keys used by the SEE editor as defined for the
IBM-PC keyboard. If the editor has been reconfigured for a different keyboard
you wil have to map the reconfigured keys to the IBM-PC keys to understand the
following documentation.

3.4. 1 Cursor Movement Keys

In the following descriptions, the up-arow (") character preceding the name of the
key implies that the control (Ctrl) keymust be held down while the key is pressed.

Home:

"Home:

End:

"End:

PgUp:

PgDn:

UpArrow:

When the Home key is pressed once, the cursor wil move to the
beginning of the current line (the line that the cursor is currently on).
If the Home key is pressed twice in succession, the cursor wil move
to the beginning of the first line on the screen.

When the control key is held down as the Home key is pressed, the
cursor wil be moved to the beginning of the first line of the fie.

When the End key is pressed once, the cursor wil move to the end of
the current line (positioned just before the CRLF end of line
sequence). If the End key is pressed twice in succession, the cursor
wil move to the beginning of the last line on the screen.

With the control key held down, the End key wil move the cursor to
the end of the fie.

Moves the cursor to the fourt line of the previous screenful of text.
The next screen starts from the current screens fourt line from the
bottom.

Moves the cursor to the fourt line of the next screenful of text. The
previous screen overlaps the current screen with the first four lines of
the current screen.

The up-arow key moves the cursor up one line. The column that the
cursor is in remains the same. If the cursor is positioned beyond the
end of a line because of this action, the visible cursor is shown beyond
the end of the line but is logically located just before the CRLF

Page 3.

DeSmet C Development Package, Version 2.5

sequence (The cursor is moved to this location when some other
operation is performed.) If the cursor is already on the top line of the
screen, the screen is scrolled down one line to show the new line.

DownArrow: The down-arrow key moves the cursor down one line. Again, the
visible cursor remains in the same column as described above. If the
cursor is already on the last line of the screen, the screen is scrolled
up one line to show the new line.

LeftArrow: The left-arow key moves the cursor one character to the left. If the
cursor is at the left edge of the screen, and the screen has been
scrolled to the right, the screen wil scroll back to the left by 15
character locations to show ,the new cursor position. If the screen had
not been scrolled implying that the cursor was on the first character
of the line, the cursor moves to the end of the previous line.

With the control key held down, the cursor wil move to the left in
word increments rather than character increments. Each time this
combination is pressed, the cursor wil move to the last character of
the previous word where word is defined as a sequence of letters or

. digits. Any other character separates the words.

RightArtow: The right-arow key moves the cursor one character to the right.
the cursor is at the right edge of the screen and more text exists in the
current line, the screen is scrolled to the right by 15 characters to
show the new location. If the cursor was positioned at the end of the
line, then the cursor is moved to the beginnng of the next line.

"LeftArrow:

Return:

"RightArrow:Ths combination moves the cursor to the begining of the next word.

The return key is normally used to insert a CRLF end of line sequence
into the text, thereby positioning the cursor at the beginning of the
next line. If the return key is pressed while in command mode, the
cursor wil simply move to the beginning of the next line.

3.4.2 Editing Keys

Backspace: The-ackspace key deletes the character to the left of the cursor. If
the cuts or is positioned at the beginning of a line, the CRLF end of
line sequence is removed and the two lines are joined to form a single
line.

Page 3.

DeSmet C Development Package, Version 2.

Del: The delete key deletes the character under the cursor. If the cursor is
positioned on the CRLF end of line sequence, then the next line is
joined with the current line.

Ins: The Ins key is used to toggle between Insert and Exchange modes. At
the command level, it wil place the editor into Insert mode.

F1-F8: The function keys F1 through F8 are available for user-defined
macros. Macros may be saved with the Macro-Save command.

"C or "Break:Holding down the control (Ctrl) key and hitting the letter ' C' or the
Break key (Scroll Lock) wil normally stop the execution of a
command (where reasonable). Ths is useful when you decide not to
execute the Find command and are in the middle of typing in the
search string. Typing control-C wil abort the Find command
without modifying the old search string. This key combination wil
also stop an executing macro.

3.4.3 The DOS Key

Under MS-DOS 2.0 and later versions of the operating system, the F9 function key
allows another command shell to be executed while the editor and text remain in
memory. When the F9 key is pressed, the screen wil display the DOS copyright
message and wil prompt for a command. You can execute any command, even
another copy of the editor (although ths is n. recommended because of conflcts
with the spil fies). When you want to return to the editor, type the DOS command

exit

and the text wil be redisplayed as if the F9 key never had been pressed.

DOS, SEE, and your text occupy about 128K. You must have at least an additional
64K of unused memory in your machine to use the DOS feature.

Page 3.

DeSmet C Development Package, Version 2.

3.5. Commands

In command mode, the menu line displays the commands available for editing and
manipulating the text. Since the names of the commands are too long for a single
menu line, the menu is broken into two pars. To toggle between each par of the
command menu, press the space bar.

Again Buffer Copy Delete Find -find Get Insert Jump --space--

Macro Other Put Quit Replace Set Tag Xchange --space--

Command Menus

To invoke a command, type the first letter of the command. To terminate a
command, press the escape o:Esc:; key. A command may be aborted by holding
down the control key, Ctrl, and typing the letter C (control-C).

Many commands wil take a repetition count to execute the command multiple times
before completing. The repetition count takes the form of a decimal number or a
slash (indicating a very large number). It is entered prior to typing the first letter of
the command. Some commands Find, -find, and Replace - may be given a
question mark (7) repetition count indicating that the editor should prompt after
each string is found. Note that at the command level, the cursor movement keys
may also be repeated by using a repetition count. Ths also means that if a mistake is
made in the repetition count" the Backspace key cannot be used to correct the
mistake. The command must be aborted.

In the following descriptions of the commandsvaep:; indicates that the command
takes a repetition count and o:rep I ?: indicates that it wil take a repetition count or
question mark repetition count.

Page 3.

DeSmet C Development Package, Version 2.

.crep:: Again

The Again command repeats the action of the last Find, -find, or replace command
without any prompting. For example, if a Find command is executed to locate the
string "hello , then executing the Again command wil find the next occurrence of
the string "hello

Buffer

The Buffer command is used to copy a block of text into the copy buffer. The copy
buffer is an internal buffer used to hold the last buffered or deleted (with the Delete
command) item. To use the Buffer command, move the cursor to the beginning of
the block to be buffered and type 'B' for Buffer. The character under the cursor
wil be temporarily ovexwritten with a block to indicate the beginning of the block.
The menu line wil be replaced with the new menu line:

Buffer: Esc to exit Again Find -find Jump

Now move the cursor to the end of the block, either with the cursor movement keys
or with the Again, Find, -find and Jump commands. These commands may be
preceded with a repetition count. When the cursor is positioned at the end of the
block, press the Esc key or the letter 'B' to terminate the buffering operation. SEE
wil copy the contents of the block into its copy buffer. The previous contents of the
copy buffer are thown away.

.crep:: Copy

The copy command inserts the contents of the copy buffer at the current cursor
location. If a repetition count is given, the contents of the buffer wil be inserted
that many times.

Delete

The delete command is used to delete a block of text. The deleted text is placed in
the copy buffer, as mentioned in the Buffer command. To use the Delete command,
first move the cursor to the beginning of the block of text to be deleted and type '
for Delete. The charcter under the cursor wil be temporarily ovexwritten with a

Page 3.

DeSmet C Development Package, Version 2.5

block to indicate the begining of the block. The menu line wil be replaced with the
new menu line:

Delete: Esc to exit Again Find -find Jump

move the cursor to the end of the block, either with the cursor movement keys
or with the Again, Find

, -

find, and Jump commands. These commands may be
preceded with a repetition count. When the cursor is positioned at the end of the
block, press the Esc key or the letter 'D' to delete the block. The text wil be
removed and placed in the copy buffer.

-(rep I ?'? Finq

The find command is used to locate the next occurrence of a given string. The
search runs from the cursor location to the end of the fie. To use the Find
command, type the letter 'F' for Find. The Find command wil then prompt for the
search string. The last string given in a Find, -find, List, or Replace command is
displayed on the message line. If the same string is to be found, hit the Ese or
Return key to select the argument. Othexwise, enter the new search string. When
the string is entered, press the backquote or Return key to indicate completion. The
Find command wil then search for the next matching string. If found, the cursor
wil be moved to the character following the string, othexwise the message:

can t find" -cstring::

wil be displayed and the cursor wil not move. -cstring:: is the search string. If a
repetition count is given, the string wil be located that many times before the
command is done. For example, typing the command stream:

3 F hello -cReturn::

wil place the cursor after the third occurrence of the string "hello . If a question
mark (?) is given as the repetition count, the editor wil move the cursor to the next
occurrence of the string and prompt with the message:

continue? (y/n)

Typing the letter 'Y' wil move the cursor to the next occurrence of the search
string. Any other character wil stop the Find command.

Page 3.

DeSmet C Development Package, Version 2.

-=rep I?-; -

The -find command works similarly to the Find command except that the text is
searched backwards from the cursor to the beginning of the fie. When the -find
command terminates, the cursor is left on the charcter prior to the located string.
The question mark repetition count also works as in the Find command.

Get

The Get command is used to insert the contents of a fie into the current fie. The
text from the fie is inserted at the cursor location. To use the Get command,
position the cursor at the insertion point and type the letter ' . The Get command
wil prompt for a fiename. Enter the fiename and type -cReturn:;. The Get
command wil prompt with

reading from ..ilename:; ...

and attempt to read and insert the text from the file. If everything goes well, the
word "completed" wil be added to the prompt. If an error occurs (usually meaning
that the file does not exist), the words " can t read fie" wil be appended to the
prompt. Finally, if the buffer was filed as a result of the Get command, the words
buffer filed" wil be appended to the prompt indicating that only part of the fie

was inserted.

Insert

The Insert command is used to place the editor into insert mode. Once in insert
mode, characters other than the command characters wil be inserted in the text at
the cursor location. The cursor movement characters always move the cursor
appropriately. The Insert command does not normally do anything with the
repetition count. However, if the I' repetition character is specified, then a newline
character is inserted at the cursor location before entering insert mode. If the Ins
key is pressed, the mode wil be changed to Exchange mode. To terminate the insert
mode, type the Esc character.

-=rep-; Jump

The Jump command is used to move to a location previously marked with the Tag
command or for moving to a line when given a line number. When a repetition

Page 3.

DeSmet C Development Package, Version 2.

count is given, the cursor wil be moved to the beginnng of the corresponding line
(the line number given by the repetition count). Othexwise, the Jump command wil
display the menu:

Jump: ABC D

indicating the four tag names to use. If one of these letters is typed, the cursor wil
be moved to the location associated with the tag. This location is set with the Tag
command. If the tag has not been set, the cursor wil move to the end of the fie.

-:rep:; List

The List command is used to display all lines containing the given string. The List
command prompts for the search string the same way as the Find command. Once
the search string has been entered, the List command temporarily takes over the
screen and displays all lines, beginning from the cursor location, which contain the
search string. A line may be listed many times if it contains the search strig 'more
than once. After the screen is filed with lines , the prompt wil read:

hit a key to continue

Any key other than control-C wil display the next set of lines. If there are no more
lines with matching strings, the screen reverts to its normal display with the cursor
positioned after the last matching string. If no repetition count is given, all

occurences are assumed. Othexwise, the repetition count wil control the number of
times the List command wil search for the string.

Macro

The Macro command is used to record input from the keyboard and the mouse.
This recording can then be played back to perform the same sequence of operations
beginning at another point in the text. Thus macros give the abilty of creating
custom functions built from the standard set of operations. There are eight
definable macro keys, F1 through F8. When one of these function keys is typed, the
macro associated with the key is replayed. Note that macro keys and the Macro
command gm be reco ded.

Page 3.

DeSmet C Development Package, Version 2.

When the Macro command is invoked, the menu:

Macro: Delete Load Record Save

wil appear with the following meanings:

Delete: used to delete a macro definition. Delete prompts with the menu line:

select function key: F1 - F8

When a function key is selected, the macro associated with the key
wil be removed. Typing the Esc key wil exit the command without
deleting any macro.

Load: used to reload the macros and controls settings from the " see.mac
fie. This fie is created by the Save command.

Record: used to start the macro recording. Record prompts for the macro
number with the menu:

select function key: F1 - F8

When the function key is selected, the old macro associated with that
key, if any, is deleted and a new recording is begun. All input wil be
recorded as par of the macro. To terminate the recording, reinvoke
the Macro command by typing the letter ' . Now when the
command key is held down and the number is typed , the recording
wil be replayed as if the inputs were coming from the keyboard.

Save: used to save the macro definitions and control settings (see the Set
command) into the fie named " see.mac" in the current directory.
This file is read, if it exists in the current directory, when the editor is
first invoked and when the Load command is used. If the fie does not
exist in the current directory, then each dirctory in the PATH system
parameter is searched.

For example, the following sequence of commands wil create macro FI which can
be used to delete the current line:

M R ooFl;: ooHome;: D oodown-arow;: D

Now when the FI key is typed, the line that the cursor is on wil be deleted.

Page 3.

DeSmet C Development Package, Version 2.

Other

The Other command is used to toggle between the two fies available for editing.

The first time the Other command is used, it wil prompt for a command line as in
the Quit-Initialize command. Subsequent uses of the Other command wil change
the active fie from one to the other.

Put

The Put command is used to write a block of text out to a separate file. To use the
Put command, move the cursor to the beginning of the block to be written and type
the letter ' . The character under the cursor wil be temporarily ovexwritten with

a block character to indicate the beginning of the block. The menu line wil be
replaced with the new menu line:

Put: Esc to exit Again Find -find Jump

Now move the cursor to the end of the block, either with the cursor keys or with the
Again, Find

, -

find, and Jump commands. These commands may be preceded with a
repetition count. When the cursor is positioned at the end of the block, press the

backquote or the letter 'P' to select the end of the block. The Put command wil then
prompt for a fiename. Enter the fiename and type -cReturn:;; the block of text
wil be written to the fie.

Quit

The Quit command is used to terminate an editing session. When the letter 'Q' is
typed, the Quit command wil display the menu:

Quit: BAKup Exit Initialize Save-exit Update Write

and wil show the name of the fie, an indication if the memory buffer has been
modified, and the size of the fie , on the message line. To leave the Quit menu

without executing any commands , type the Esc character. The menu items have the
following meanings:

BAKup: causes SEE to change the extension of the old file to .BAK and then
write the contents of the memory buffer to the fiename given on
the invocation line. If this is a new file being edited, no .BAK fie is
created.

Page 3.

DeSmet C Development Package, Version 2.5

Exit: causes the SEE editor to exit back to the system. If the memory
copy of the fie has been modified, SEE wil prompt with the
question:

ignore changes? (y/n)

Typing 'Y' wil leave the editor and the changes made to the
memory image of the fie wil be lost. Any other character wil
abort the Exit command.

Initialize: causes the SEE editor to reinitialize the editor and prompt for a new
invocation line (excluding the SEE program name). If the text has
been modified and not saved, SEE wil prompt as if Exit had been
selected, giving one last chance to save the changes to the fie. The
new fie is then read in and the editor is restarted. Note that the
macros and the copy buffer are left intact and can be used with the
new fie.

Save-ex1t: writes out the fie to the disk and exits from the editor without
furter prompting.

Update: writes a copy of the memory buffer out to the fie given on the
invocation line. This command is useful for quickly saving the
contents of the memory buffer out to the disk to prevent a large loss
of data if a fatal error should occur (either software or hardware).

Write: writes a copy of the text to a specified fie. The Write command
wil prompt for fiename and wil then write the text to that fie.
This command is usually used when no fiename was given on the
invocation line.

..rep I?-: Replace

The Replace command is used to locate a specific string of characters and replace it
with another strng. Replace uses the same search string specified in the Find, -find
and List commands. To replace a string, type the letter 'R' and enter the search
string (or just type Return if the current search string is correct). Then enter the
replacement strng and type Return:;. The editor wil find the I1 occurrence of

Page 3.

DeSmet C Development Package, Version 2.

the search string and replace it with the replacement string. If the search string
canot be found, the following message wil be displayed:

cannot find" 0: search string;:

The repetition count controls the number of times the replacement wil be
performed. To replace all occurrences, move the cursor to the beginnng of the fie
and use I' for the repetition count. If the question mark (?) is given as the repetition
count, then before the string is replaced, the editor wil prompt with:

replace? (y/n) or quit (q)

Typing the letter 'Y' wil replace the string and the cursor wil move to the next
occurrence of the search string. Typing the letter ' N' wil simply move the cursor
to the next occurrence of the search string. And typing the letter ' Q' wil abort the
Replace command.

Set

The Set command is used to change several controls in SEE; tab width, indentation
case sensitivity on search strings and a special auto-insert mode. The values of the
controls may be saved with the Macro Save command so that the settings wil be the
same each time the editor is invoked. The Set command wil display the menu and
message line:

Set: Auto- ins Case Indent PC Right-co! Spil Tabs Word-wrap T-indent
---- off yes yes 72

(g

off off

The message line (the line below the menu line) contains the current settings of the
controls. To change a control, pick its menu item and follow the prompts. The
controls are defined as follows:

Auto-ins: This control forces the editor into insert mode after each command.
To execute a single command, type the backquote key to
temporarily terminate the insert mode and bring up the command
menu. Select a command as usual. After the command executes,
SEE wil automatically place itself back in Insert mode. Selecting
this menu item wil display one of the following two messages,
depending on the state of the control:

Page 3.

Case:

Indent:

DeSmet C Development Package, Version 2.

if the Auto-insert control is off (default)

Set auto-insert mode? (y/n)

othexwise

Reset auto-insert mode? (y/n)

Typing 'Y' wil change the control from one state to the other.
Anything else wil leave it alone.

This control is used while searching for strings in the Find, -find,
List, and Replace commands. When the control is on, the case of the
search string and the text is ignored during the string comparison
so the string "AbC" is equal to the string "aBc . When this control
is off, the case of the characters in the string must match exactly.
Depending on the state of the case-ignore flag, one of the following
messages wil be displayed when this menu item is select

if the case- ignore control is on (default)

Make case significant on searches? (y/n)

othexwise

Ignore case of searches? (y/n)

Typing 'Y' wil change the state of the control.

This control indicates whether the blanks and tabs from the
previous line are copied to the beginning of the the new line when a
Return is inserted. When this control is on, the indentation is
copied. This provides an aligned left margin to the indented text.
When this control is off, no indentation is copied when a Returp. is
entered and the cursor moves to the left edge of the screen.
Depending on the state of the Indent control, selecting the Indent
menu item wil result in one of the following messages:

if the Indent control is on (default)

Reset auto-indent mode? (y/n)

Page 3.

DeSmet C Development Package, Version 2.5

othexwise

Set auto-insert mode? (y/n)

Typing 'Y' wil change the state of the control.

pc: This menu item selects the IBM-PC specific information. These
settings may be valid for other direct clones but it is not guaranteed.
The following menu wil be displayed:

Cursor-height Foreground-color Background-color

Cursor-height: Sets the height, in pixels, of the character cell
size. By enabling this control, the cursor wil
change shapes according to the mode that the
editor is in; a double bar for command mode, a
single bar for insert mode and a block for
exchange mode. Enter 0 to disable ths feature.
With the color graphics adapter, enter 8, with
the monochrome adapter, enter 12.

Foreground-color: Sets the foreground color attribute. The colors
are defined by the IBM-PC as follows: O-black,
blue, 2-green, 3-cyan, 4-red, 5-magenta,

Brown, 7-light grey, 8-dark grey, 9-light
blue, 10-light green, ll-light cyan, 12-light red,
13-light magenta, 14-yellow, 15-white.

Background-color: Sets the background color attribute. The
background colors for the IBM-PC are defined
as follows: O-black, 1-blue, 2-green, 3-cyan
4-red, 5-magenta, 6-brown, 7-light grey.
Values above 7 cause the charcters to blink.

Right-col: The Right-col control sets the character column for the Wrap
command and the automatic word-wrap mode. Words which
extend beyond this column are moved to the next line.

Spil: The Spil control determines the drive on which the editor s spil
fies wil be created. The ' (g' indicates the use of the curent default

Page 3.

DeSmet C Development Package, Version 2.5

drive. To set the drive, simply select this item by typing S' and the
prompt:

enter spil device letter: (A-Z, 0 for default)

wil appear. Type a single letter to signify which drive to use or the
0' character to indicate the use of the current default drive. If spil

fies have already been opened, they wil be moved to the new drive
(the contents of the copy buffer wil also be deleted). This is useful
if the original spil disk becomes full and another disk is available.

Tabs: The Tabs control determines the expansion factor of tab characters
in the text. By default, this value is 4. However, if the fie on the
invocation line has an extension which starts with the letter 'A' (as
in xxx.a), then the tab size wil be set to eight; a useful size when
writing in assembly language. If the extension starts with the letter
e', then the tab size is set to four. Othexwise the tab size remains at
its current setting. The tab size may be a value from one to nine
indicating that the tab stop locations wil be separated by one to nine
character locations, respectively.

Word-wrap: When this control is on, the editor wil automatically move words
to the next line if the current column is greater than the right
column (set by the Right-col control).

indentThis is a special indentation mode for assisting in C programming.
When this control is on and the Indent control is on, the editor wil
automatically add an extra tab character to the indentation when a
o:Return:; is inserted just after the left brace (n character. There
are two possibilties for o:Return:;s which follow the right brace G)
character. If mode 1 is selected and a tab character preceded the
right brace character, it wil be removed and the indent level
reduced accordingly. This corresponds to the following type of
indentation:

main ()

int i;
for (i = 1; i 0: 10; i++)

printf ("hello, world\n

Page 3.

DeSmet C Development Package, Version 2.

If mode 2 is selected, then the , indentation of the new line is
decreased by a tab if the Return was inserted just after the
right-brace (1) character. This corresponds to the following type
of indentation:

main ()

int i;
for (i = 1; i 10;

printf ("hello,
i ++)

world\n

To change the brace indentation mode, type the left brace
character and type:

to turn brace indentation off
to set indentation mode 1
to set indentation mode 2

Tag

The Tag command is used to set markers in the text fie. Once the tag is set, the
marked character can be located with the Jump command regardless of the
insertions and deletions around the marked character (unless the marked character
is deleted). The Tag command displays the menu:

Tag: ABC D

where A, B, C, and D correspond to the four tags available. To use the Tag
command, move the cursor to the character to be marked and type 'T' . Now select
one of the tag names by typing the corresponding letter.

Version/View

When the cursor is at the begining of the fie, this command displays the version
number on the second line of the display. With the cursor at any other location in
the fie, it redisplays the current screen with the line containing the cursor at the
third line of the display.

Page 3.

DeSmet C Development Package, Version 2.5

Wrap

The Wrap command is used to reformat a paragraph. All of the lines, staring with
the line that the cursor is currently on to the next blank line, are reformatted to
make sure no word extends beyond the right margin (set by the Right-col control).
Indentation for the lines is determined by the indentation of the first line of the
paragraph. The Wrap command requires a confirmation to avoid wrapping code by
mistake. The letter 'W' may also be used to confirm the Wrap operation.

Xchange

This mode is similar to Insert mode except that characters in the text are
overwritten by the new characters. The only characters not overwritten are
Returns. An attempt to ovexwrite a Return simply inserts the character prior to the
Return. If the Ins key is pressed while in Exchange mode, the mode wil be changed
to Insert mode.

Finally, there are a few single character commands which are not listed on the menu
line but may be of use:

The number sign (#) command displays the current line number on the message
line.

When the cursor is on a left brace ' f, left parenthesis ' (' or left bracket ' (' and one
of these command characters is typed, the cursor wil be moved forward to the
corresponding right brace '1, right parenthesis ' , or right bracket T. If the
cursor is on a right character ')', it wil move backward to the corresponding left
character '

-(,

('. Note that this command does not know about comments so
unmatched characters wil confuse the search routine.

.crep

The backs1ash command is used to insert literal characters into the text by entering
their decimal equivalents. When backslash is typed, the editor wil prompt for a

Page 3.

DeSmet C Development Package, Version 2.5

decimal value. Numbers from 0 to 255 are valid but 254 and 255 should not be
entered. The repetition count determines the number of times the command wil
prompt for input.

6 Configuration

Distributed with the package, are a number of fies used to reconfigure the editor to
run on other MS-DOS based machines with different keyboards and/or screens:

SEE.
PCIO.
CONFIG.

relocatable object fie

source code for an IBM-PC BIOS based interface.
source code for terminal based screen interfaces. Contains
interfaces for ANSI terminals, a Hazeltine 1500, Dec VT-
and the Zenith Z100.

The PCIO.A and CONFIG.C fies should contain enough information in the
comments to build your own interface if necessar.

To build the editor, compilelassemble one of the interface fies, or one of your own
making, and link it with the editor with the following bind command:

bind see config

This wil generate a new SEE.EXE fie with your interfaces linked in instead of the
standard IBM-PC interfaces.

Page 3.

DeSmet C Development Package, V2.

4. The C88 C Compiler

1 Introduction

C88 is the C compiler for the 8088/8086 family of microprocessors. It accepts C
source programs as input and produces object fies. The model employed by the
compiler efficiently utilzes the 8088/8086 architecture but limits a program to
64KB code and 64KB of data.

2 Invocation

C88 o:fiename:: (options)

dilename:: is the name of the fie containing the C source. If it does not include
an extension, the extension C' is assumed.

Options: The case of the option is not significant. Each option should be
separated from other options by blanks. Options may be preceded
with the dash (-) character.

A - assembly output. This option indicates that the compiler should
produce an assembly language source fie instead of an object
fie. The name of the assembly language fie wil be the same as
the name of the source fie but wil have the extension '

C - produce check information. This option causes the compiler to
generate information for BIND to create the .CHK fie used by
the debugger and profier.

Do:name:: - compiler drive specification. The compiler assumes
that the fies GEN.EXE and ASM88.EXE are in the default
directory on the current drive. This option is used to inform the
compiler that the fies are on a different drive. For example, if
the compiler is on drive ' , then the option 'DM' is needed.

Under MS-DOS 2.0 and later versions of the operating system,
ths option is rarely needed as the system PATH variable is also
used to find the other passes of the compiler.

Page 4.

DeSmet C Development Package, V2.5

Ic:name:: - include path name. Ths option overrdes the default
driveldirectory for fies included with the #include control. The
directory name must end with a trailng backslash (\) character
(e.

g. -

ic:\src\include\). See section 4.4.1 for #include details.

M This option is used to produce Intel object fies rather than the
standard . object fie format. To work properly, the fie
TOOBJ.EXE from the optional DOS LINK package (not
included with the DeSmet C Development Package) must be in
the same driveldirectory as the GEN.EXE and ASM88.EXE
fies.

Nc:defname::=c:defvalue:: - specify #define name and value.
Used to set debugging switches or constant values without
editing the fie. This option is equivalent to

#define defname defvalue
at the begining of the program. To setc:defname:: to one, enter
nc:defname:: , which is equivalent to

#define defname 1
Spaces are not allowed.

Oc:fiename:: - output fiename. The compiler wil produce an
object fie with the specified name. If the name lacks an
extension, the extension ' 0' wil be added. The default object
name is the same as the source name with the extension of '

Tc:drive:: This option specifies the drive that the compiler should
use for its temporary fies. If not specified, the compiler wil
build its temporary fies on the default drive. If this drive is
close to being full, the 'T' option should be used to change the
drive for the temporaries. Also, if the RAM Disk has been
installed, placing the temporary fies there wil drastically cut
the amount of time needed to compile a program.

3 Examples

C88 blip

compiles the fie named blip.c. The object fie wil be named blip.

Page 4.

DeSmet C Development Package, V2.5

m:C88 b:blip. ccc tm dm

runs the compiler from drive M on the fie b:blip.ccc. Temporary files are
also written on drive M. Note the use of the D option to indicate the location of
the other passes of the compiler. The object fie wil also be named blip.

C88 blip - ic: \inc\ -a -nNewVersion -nNYear=1985

compiles the fie named blip.c. Include fies are taken from the directory
c:inc\. An assembly language fie is generated named blip.a. The 'N' options
are equivalent to adding

#define NewVersion 1
#define NYear 1985

to the start of blip.

4.4 The C88 Language

C88 compiles C programs that conform to the standard definition of the C language
as described in the book The Programming Language by Brian W. Kerrighan
and Dennis M. Ritchie. The following documentation describes the implementation.

4.4. 1 Preprocessor directives

#define
defines a macro with or without parameters.

#undef, #ifdef and #ifndef
tests the status of the #defined macros

#include
iJ:cludes other fies into the program. #include s can be nested to a maximum
depth of 3.

#include " fiename" wil search the default directory for the fie fiename.
#include o(fiename wil first search the default directory for fiename. If the
fie was not found, the environment (see DOS 2.x/3. SET command) is
searched for the varable INCLUDE. If the variable is found, it is assumed

Page 4.3

DeSmet C Development Package, V2.5

to contain a set of directory prefixes separated by semi-colons. For example,
if INCLUDE is set as follows

C/set include=c: \; c: \usr\include\

then the line

#include world. h/

would cause C88 to search for

world.
c:\world.
c: \usr\include\world. h

#if, #else, #endif
conditionally includes or excludes source statements.

4.4.2 Data Types

char Unsigned byte with a range of 0 to 255.

int
short Signed Integer with a range of -32768 to 32767.

unsigned Unsigned integer with a range of 0 to 65535.

long Signed integer with a range of -2147483648 to 2147483647.

float Four byte floating point value. A float number has about 7 digits of
precision and has a range of about l.E-36 to l.E+36. The floating
point formats are defined by the IEEE floating-point stadard.

double Eight byte floating point value. A double number has about 13
digits of precision and a range of about 1. 303 to I.E+303.

(pointer) pointers are two bytes, limiting total data space to 64KB.

To take advantage of the 8088/8086 instrction set, expressions involving only char

types are not coerced to int before evaluation. The sum of a char equal to 255 and a
char equal to 1 is 0 rather than 256. Constants are considered to be int values so that
constant plus char is a two byte integer operation.

Page 4.4

DeSmet C Development Package, V2.

4.4.3 Extensions

The UNIX Version 7 extensions enumerated types, extended member

name-space, and structure assignment are fully supported.

Enumerated types provide a convenient method of declaring an ordered set of
named constants. Values star with zero, and may be reassigned with a

name = value expression. The same value may be assigned to

several names. For example
enum color ired, bl ue=4, green ca, * cp;
enum color cb;
if (ca == red)

cb = green;

is equivalent to
#define
#define
#define
int ca,
int cb;
if (ca == red)

cb = green;

red
blue
green 5

cp;

Extended member name-space relaxes the K&R reqmrement that if a member
name appeared in more than one structure or union, then it had to have
the same data type and offset in every appearance. Now , the only

restriction is that the member name must be unique within the structure
or union. If a member name is used that is not in the referenced

structure, the warning,
member not in structure

is issued. As a loophole, a pointer to c h a r may be used as an
anonymous pointer to any structure. CAUTION: D88 doesn t know

about the extended member name-space yet it might use the wrong
one.

struct int i,
struct int j;
char * cp;
zip. i = 1;
zap. i = 1;
zap. k = 1;
zp-::i = 1;
zp-::k = 1;
cp-::k = 1;

j, k; zip;
char i;) zap, * zp;

/ *

OK * /

/ *

OK * /
/* WARNING *

/ *

OK * /
/* WARNING *
/* OK, ANONYMOUS */

Page 4.

DeSmet C Development Package, V2.5

Structures can be assigned, used as parameters, or returned from a function.
CAUTION: this may create problems with existing programs because
previous versions of C88 converted the name of a structure in a
parameter list to a pointer to that structure, while the current release
pushes the entire structure. To highlight this potential problem, C88
wil issue the following waring

structure assignment

when strctures are passed by value, and the waring
returns structure

when a function returns a structure. These warngs wil be removed
in a future release.
CAUTION: D88 doesn t support strcture assignment.

struct z iint i, j;) zip, zap, zxax ();
main ()

zip = zap; /* structure assignment *
zap = zmax (zip, zap);

struct z zmax(a, b) /* func returns struct */
struct z a, b;

if(a. :; b.
return a;

return b;

Variable names are significant to 31 characters instead of 8.

A #asm directive has been included to allow in-line assembly language code
for time critical applications. All lines following a line staring with
#asm are passed through to the assembler. The next line beginning
with the "#' character, ends the in- line assembly code. For example:

move (count, src, tar)
int count; char * src, *tar; #asm

MOV

MOV

MOV

MOV
MOV

CLD
REP MOVSB

CX, (BP+4 J ; count
SI, (BP+6J ;src
DI, (BP+8 J ; dst
AX, DS
ES, AX

Page 4.

DeSmet C Development Package, V2.5

4.4.4 Forward References

C88 is effectively a one pass compiler so foxward references wil not work. The
following program:

main ()
i=9 9;

extern int

wil produce a warning that ' i' is l,mdefined and is assumed to be a local variable

named ' . The global variable ' i' wil not be changed.

Structure tags must be defined before being referenced. The only exception is

pointers , so that legal structure declarations include structures of the form:

struct a
struct b *

struct b
struct a *

4.4.5 Externs

The rules for 'extern' declarations are:

Statements that are global to the source fie, like ' int blip; ' may be in

several different fies that are linked together. The BINDer wil

allocate 2 bytes for the global integer varable
blip. This is an extension

to the standard rule that restrict global declarations to a single fie and
require all the other declarations to be extern.

A declaration that includes the keyword 'extern ' may not include
initializers and does not allocate any memory. Thus a variable so
declared must be declared somewhere else without the ' extern
keyword in order to reserve memory for the variable. For example, if
a fie contains the declaration extern int blip then some other fie must
contain the declaration int blip to actually allocate storage. If this is
not done, the binder wil complain about a reference to the unresolved

Page 4.

DeSmet C Development Package, V2.5

symbol blip. It is permissible to have both an 'extern' and non- extern
declaration in a single fie. For example,

extern int blip;
int blip;

is valid.

To create include fies containing data declarations:

If the variable is not initialized (which means it wil be initialized with zeros)
either include the declaration:

int blip;

in every fie or include the declaration:

extern int blip;
in every fie and add the declaration:

int blip;

to one of the fies to actually allocate the storage.

If the variable needs initialization, the second approach must be used. Include
the declartion:

extern int blip;
in the include fie. Initialize the value in only one fie:

int blip = 1985;

These rules are about the same as Version 7 UNIX. Extern rules are an area of C
that are currently controversial. System V UNIX tried to tighten up the rules but
enough people complained that 5.2 is back to normal.

Page 4.

DeSmet C Development Package, V2.

4.4.6 Macros

Macro arguments are not replaced within a quoted string. For example, in The

Puzzle Book by Alan Feuer the macros in .cdefs.h:: use the following constrct to
customize printfO calls.

#define PR(fmt, v)printf("value=%fmt%t" v);

Ths does not work with the C88 compiler. Instead add the following defines to
.cdefs.h:::

#define D
#define F
#define C
#define G

value = %d%t"
value = %f%t"
value = %c%t"
value = %g%t"

and change the PR define to

#define PR(fmt, v)printf(fmt, (v));

Statements of the type

PRINTl (d, x) ;

must be changed to

PRINTl (D, x) ;

in the programs. Lower case D, F, C, and G' s would allow the programs to remain
unchanged but varables c and g are used in structure one and variable g is used in
structures two and three.

4.4.7 Strings

Literal character strings delimited by quotes nil') cannot contain the NUL
character ('\0'). The compiler terminates the string at the NUL character, even
though it checks that the string has a terminating quote character. If you want NUL
characters in the string for initialization purposes, use an aray assignment.

char initl ()= abcdeft9xyzt9012" , *ip=initl;

while (ip = index (ip,
*ip = ' \0'

I t9 I))

Page 4.

DeSmet C Development Package, V2.

5. The ASM88 8088 Assembler

1 Introduction

ASM88is the 8088/8086 assembler. It reads assembly language source fies and
produces linkable object fies. The assembly language is described in appendix B.

2 Invocation

ASM88 -cfiename:; (options 1

-cfiename:; is the name of the assembly language source fie. If it does not include
an extension the extension ' A' is assumed.

Options: The case of the option is not significant. Each option should be
separated from other options by blanks. Options may be preceded with
the dash (-) charcter.

L(dilename:; 1 - The assembler wil produce a listing from the
assembly language input. This listing includes the hex-values
generated by the assembler as well as line numbers and
pagination. If no name is specified, then the name of the
source fie with the extension

' .

L' is used. If the specified fie
does not have an extension

, '

L' wil be used. Othexwise the
listing is written to the specified fie. To generate a listing on
the printer, use ' LPRN:

, The assembler wil produce an object file with the Intel
formats rather than the standard . format. The fie
TOOBJ .EXE from the DOS LINK package must be in the
same directory as the GEN.EXE and ASM88.EXE fies.

Odilename:; - The assembler wil produce an object fie with the
specified name. If the name lacks an extension, then the
extension ' 0' wil be appended to the name. The default
object fie name is the name of the source fie with the
extension changed to '

Page 5.1

DeSmet C Development Package, V2.5

Tc:drive:: - The 'T' option specifies the drive where the assembler
temporar fies wil be created. Ifa RAM Disk is available,
redirecting temporary fies to that drive wil greatly speed
development. The assembler normally creates its temporary
fies on the default drive/directory.

Pnn Specifies page length, in lines. The default is 66.

Wnn Specifies page width, in characters, for the list fie. The value
nn must be a number from 60 to 132. The default is 80.

3 Examples

asm88 blip

assembles the fie named blip.a and produces an object fie named blip.

M:asm88 blip. asm -Ob:blip Lblip. lst
runs the assembler from drive M: on the fie named blip.asm. The output is an
object fie named blip.o on drive B: and a listing fie named blip.lst on the
default drive.

asm88 blip. a TM -oa:blip. o -lb:blip. lst
assembles the fie named blip.a. Temporar fies are created on drive M:. The
output of the assembler is placed on drive A: in the fie blip.o. A listing file is
generated and written to drive B: in the file blip.lst

Page 52

1 Introduction

DeSmet C Development Package, V2.5

6. The BIND Object File Linker

BIND is the program that links together object and library modules and forms
executable program. For very long command lines, see the -f option.

6.2 Invocation

BIND fiename:; fiename:;... (options)

fiename:; A sequence of fienames separated by blanks. The fienames
should be the names of object (.0) or librar S) fies. If
fiename does not have an extension

, '

0' is assumed. BIND
automatically looks for the supplied library CSTDIO.S so its
name should not be included in the list of fienames.

Options: All options may be in upper or lower case. Options must be
separated by blanks and preceded by a hyphen to differentiate
them from dilename:;s. Note that this is different from other
commands where the hyphen is optional.

The assembler option keeps BIND from generating the C
initialization code. Instead, execution begins at the
beginning of the code rather than staring at the main public
label. ARGC and ARGV are not calculated and the stack is
1l set up. Uninitialized variables are !l filed with zero.
Library functions such as creatO and openO canot be used
as they depend on the zero initialization. The ' A' and'
options are useful for a few cases but caution should be
exercised in their use.

This option indicates that BIND should also generate a
checkout (.CHK) fie. This fie is required when using the
D88 debugger and the pro fier.

fiename:; identifies a fie containing dilename:;s and
options to be used by BIND. Ths is used for very long lists
of fienames and options.

Page 6.

DeSmet C Development Package, V2.5

Lc:name:: specifies the driveldirectory containing the
CSTDIO.S standard library. If this option is not specified,
the CSTDIO.S fie must be on the default drive. With
MS-DOS 2.0 and later versions of the operating system, the

PATH system parameter is used to locate the library.

Mn Indicates that the object fies following this control should
collected in the memory-based overlay indicated by the
value n (1 to 39). See the description on overlays below for
details on the overlay mechanism.

Oc:filename:: changes the name of the output fie to
c:fiename::.EXE. If this option is not specified, the name of
the first object fie in the list with the .EXE extension wil be
used.

P(c:fiename::) Generates a sorted list of publics and offsets. C
procedures and data declared outside of procedures are
automatically public (or extern) unless explicitly declared
static. Publics with names staring with an underline ' ' are
not listed unless the - option is also specified. The optional
name is the destination for the publics list. If omitted, the
publics and offsets are listed on the console. The size of
overlays, if any, wil also be displayed.

Shhhh Specifies the stack size. hhhh is in hex. Normally,
BIND wil set the stack size as large as possible. The
option can be used to limit this size for use with exe c (

) .

- Vn This option is used to create disk-based overlays. All object
fies following this option, until the end of the list or another
overlay option, are collected into the overlay indicated by
the value n (1 to 39). See the overlay section below for
details.

(underscore) - BIND normally suppresses names that start
with an underscore (usually internal names) from the publics
list. The underscore option restores these publics to th

listing. This option is useful when you need to see all the
modules bound to your program.

Page 6.

DeSmet C Development Package, V2.

3 Examples

bind blip

binds the fie blip. with CSTDIO.S and produces the executable fie
blip.exe.

bind proga progb progc lib. s -

binds the fies proga. , progb. and progc. with the user library lib.

and the standard 110 library, CSTDIO. S, into the application fie
proga. exe. The map is printed on the screen.

bind proga progb -VI progc -V2 progd -Pmap - -Omyprog

binds the fies proga. , progb. with CSTDIO.S and creates the
executable fie myprog. exe and the overlay fie myprog. ov which
contains two overlays consisting of the object fies progc. and prod.
The publics map is sent to the fie named map and wil also list the
internal names that begin with the underline (') character.

6.4 Space Considerations

A program is restricted to a maximum of 64KB of code and 64KB of data plus the
stack BIND calculates the size of code 'and data and wil report the size of each
segment (in hex) when the -P option is specified. BIND cannot calculate the actual
stack requirements. If the 'stack' and ' locals ' size reported by BIND seems small
the actual stack requirements should be calculated by hand to make sure there is
enough space. The actual requirements are the worst case of four bytes per call plus

the size of locals (including parameters) for all active procedures plus about 500
bytes for the Operating System calls. In practice , 2KB plus the size of the local
arays simultaneously active should be sufficient.

If BIND reports that the code limit is exceeded, look in the publics map for the
scanfO and printfO routines. These are relatively large routines (around 2KB each)
and also link in the floating-point routines. Eliminating the use of these routines can
result in a large savings. If scanfO andlor printfO are necessary but no
floating-point values wil be used, tr using the CSTDI07.S instead of the standard
CSTDIO.S librar (Rename the CSTDIO.S librar to something else and rename

Page 6.

DeSmet C Development Package, V2.5

the CSTDI07.S library to CSTDIO.S). This wil assume the availability of the 8087
math chip and wil not bring in the software floating-point routines.

Another way to save some space is to use the CREA T2.C fie from the optional
HACKERS disk (not distributed with the compiler) which contains a version of the
I/O routines openO, closeO, etc. that only work with MS-DOS 2.0 and later
versions of the operating system. This saves around 3KB but wil not allow the
program to be run under MS-DOS 1.xx.

5 Overlays

Another way to solve the space problem is the use of overlays. The overlay system
provided by this package is very simple. An application is divided into a root

, portion that is always resident and two or more overlays. Only one overlay
resident (executable) at any given time. The following diagram outlnes the
relationship between the root and the overlays:

root
code

overl ey
code

root
dete

overl ey
dete

steck

overl ey 1

overley 2

overley n

There are two types of overlays, disk-based overlays and memory-based overlays.
The difference between the two types is the location of the overlays. Disk-based
overlays, created with the -V option, are stored in a separate fie. Memory-based
overlays, created with the -M option, are loaded into memory along with the root
code. Memory-based overlays should only be used when there is sufficient memory
for the root and all of the overlays. The advantage of memory-based overlays over
disk-based overlays is in the amount of time needed to make an overlay resident,
memory-based overlays being much faster to load.

Page 6.4

DeSmet C Development Package, V2.

The application program is responsible for initializing the overlay subsystem and
ensuring that the correct overlay is resident before calling any of the functions in
the overlay.

For disk-based overlays, the routine overlay in it () must be called from the
root with the name of the overlay fie to initialize the overlay system. Overlays are
loaded by callng the routine overlay (n) where n is the number of the overlay to
be made resident.

For memory-based overlays instead of disk-based overlays, do not call the

ove r 1 ay - in i t () routine and call the routine move r 1 ay () in place of the
routine overlay () .

In the following example the root is composed of the fie X.C. The first overlay is
the fie Y.C and the second overlay is in the fie Z.

File XC:
main ()

overlay init (" OV"); /* initialize */
puts ("th is is the root program\n
overlay (1); /* make 1st overlay resident *
zip () ; /* call into 1st overlay *
overlay(2); /* make the second resident */
zap () ; /* call into second overlay *
puts ("bye\n

File Y.
zip ()

puts (" this is ZIP

) ;

File Z.

zap () \

puts (" this is ZAP

) ;

Page 6.

DeSmet C Development Package, V2.5

The fies are compiled in the usual fashion:
c88 x
c88 y
c88 z

Ordinarily, the fies would be linked together using the command:
bind x y z

Instead, to create the two overlays, the command:
bind x -Vl y -V2 z

is used. The -V option is followed by the overlay number. This number starts at 1
and runs in ascending order up to 39. All fies following the -V or the -M option are
included in the overlay. All librar modules (from .S fies) are included in the root.

, The result from the execution of the BIND program with the -v option is the
executable root (.EXE) fie and the overlay (.OV) fie which contains the overlays.
The result with the -M option is an .EXE fie containing both the root and the
overlays.

D88 knows about the overlays and wil not display public symbols that are not
resident. The profier does not know about overlays and should not be used.

The -P option of BIND wil also display the size of each overlay as well as the
overlay for each symbol.

6 Libraries

Libraries are just concatenated .0 fies. The .S extension tells BIND to only include
modules that are referenced. If all of the routines in a librar are required, rename
the .S fie to a .0 fie to force all of the modules in the librar to be included.

BIND includes the entire .0 module from a librar if any of its public names have
been selected by other object modules processed by BIND. Thus, if a .0 fie
contains several functions, all of them wil be bound into a program if any of them
are called.

BIND searches a library once. Thus if you have two modules, and and calls
, the must follow in the library. LIB88 attempts to order the library so that

these inter- library references are ordered so that BIND wil find them. One way
around any circular dependencies (e.

g.,

also calls) is to include the library
twice on the command line.

Page 6.

DeSmet C Development Package, V2.

7. The LIB88 Object File Librarian

1 Introduction

LIB88 is the program that combines object modules into library modules. Libraries

are simply collections of object fies in a single fie
from which the BINDer can

select the necessary modules. By using a library, only those modules required by an
application wil be bound into the executable (.EXE) fie.

2 Invocation

LIB88 fiename:: fiename::... (option)

fiename:: names of object fies or other libraries. If no extension is given

on the fiename, ' 0' is assumed.

Options The case of the option is not significant. Each option should be
separated from other options by blanks. Options must be
preceded by the minus sign ('-) character to distinguish them
from dilename::s.

fiename:: the pathname of a fie containing fienames and

options to be used by LIB 88. This is used to get around the
128 character command line limit.

forces all input modules to be included in the output even if
publics clash. Normally when there are duplicate public
symbols, the module with the first occurrence of the
symbol is kept; all others are ignored.

Odilename:: supplies the name of the target library.
extension should be included as LIB88 wil add the
extension ' S' which is required for a library. If omitted
the first fiename forms the basis for the librar name.

Caution: if a library S) fie is first on the LIB88
invocation, the -0 option must be used or no librar wil
be created. The fiename:: cannot be the same as the .
name.

Page 7.

DeSmet C Development Package, V2.

P(c:fiename:: J A list of code publics is produced. The list goes
to the named fie if present, othexwise to the console. Data
publics are not included in order to make the list shorter. A
minus sign is in column 1 at the star of each module.

(underscore) Publics that start with underscore are
normally omitted from the publics list. The underscore
option wil include them.

3 Examples

LIE88 xx yy zz -Oxlib

combines the object files xx.o, yy. , and zz.O into a librar named xlib.

LIE88 xx -Fblip

where blip contains

yy zz
-Oxl ib

behaves exactly the same as the first example.

LIE88 xx xlib. s -Oylib

replaces the object fie xx.o in the xlib.s library and places the result in a new
librar named ylib.

7.4 Libraries

Librares are simply collections of object modules that are included into a program
by BIND as necessar. A library is only searched once by BIND so if a library
member A calls librar member B , module B must follow module A in the library.
The librarian wil attempt to sort modules so the caller comes first in the target
librar. If modules call each other, LIB88 wil print the warning

circular dependencies
The .N (for need) option is used to force object fies in a particular order (ignoring
circular dependencies). It ignores the LIB88 sort logic and concatenates all the
c:fiename:;s into a librar.

LIB88 installs the first occurrance of a PUBLIC name into the target library. Thus

Page 7.

DeSmet C Development Package, V2.5

if two modules have PUBLICs in common, then the module encountered first wil
be installed in the librar. Thus to replace the CSTDIO.S version of qsort () with

your own, you would do the following

c88 qsort
ren cstdio. s cstdio.
lib88 qsort cstdio -ocstdio
del cstdio.

CSTDIO.S was renamed to CSTDIO.O to avoid any conflct of reading and writing
to CSTDIO.S during the update.

LIB88 cannot replace object modules in libraries with circular dependencies. To
update libraries that have circular dependencies, use both the

option to name the
file of module names, and the option to suppress LIB88 sorting.

Libraries are just concatenated .0 fies. The .S extension tells BIND to only include
modules that are referenced. If all of the routines in a library are required, rename

the .S fie to a .0 fie to force all of the modules in the librar to be included.

Page 7.

DeSmet C Development Package, V2.

8. The D88 C Language Debugger

1 Introduction

D88 is the C source language debugger for C88. Its features include:

Full screen display.

C source can be displayed while executing.

All local and global variables can be d splayed.

C expressions can be evaluated.

Special support for debugging interactive programs on the PC.

Breakpoints by address Of line number.

D88 only works with programs produced by the C88 compiler because it needs
special symbol, type and line number information. It is not as good as DEBUG or
DDT86 when dealing with assembler programs. Like all debuggers, D88 needs lots
of memory -- about 45K extra for small programs and 64K for large ones. For
systems that are not IBM PC compatible, D88 wil have to be configured before it
can be used. See the the instrctions in the CONFIG.C file on Disk #2.

CAUTION: do not change floppy disks while D88 is executing. Changing any disk
while a program is running may clobber the new disk.

2 D88 Usage

D88 needs symbol information that is not nOfmally created. Before using D88, a
program should be compiled and bound with the 'C' option in order to create the
symbol information. You can bind in modules that were not compiled with the '
option, but their symbol and line number information wil not be available.
Assuming that the C88 compiler, binder, library (CSTDIO.S) and D88 are on drive
A: and that the D88 sample program CB.C is on drive B:the following commands
wil compile CB.C and create the symbol file.

Page 8.1

DeSmet C Development Package, V2.

C88 B: CB -c
C88 Compiler
end of C88

V2. (c) Mark DeSmet, 1982, 83, 84,
04B7 code OOD7 data 21% utilization

BIND B: CB -C
Binder for C88 and ASM88 V1. 9(c) Mark DeSmet, 1982, 83, 84,end of BIND 19% utilization

The 'C' options wil create the checkout fie CB. CHK in addition to the usual
executable CB.EXE fie. The CB.CHK fie contains pathnames so the user should
invoke D88 with the same default drive (and current directory with MS-DOS
V2.xx, ...) that was in effect during compilation so that D88 can find the C source.

The CB.C program is executed by

B:CB filename

For example, to run CB on itself:

A::B:CB B:CB
231 lines
A::

No errors were detected. To debug or trace a program, prefix the normal
execution line with D88. Using the above example:

D 88 B: CB B: CB

D88 wil clear the screen, print the banner and issue the following prompt.

Agaih Breakpoint Collection Display Expression Flip Go --space--

procedure MAIN file B:CB.C line
D88 Debugger Vl. (c) Mark DeSmet 1984,

D88 command input is similar to SEE command input. The top line contains a
partial list of available commands. To see the rest, hit the space bar and the top line
wil change to the next prompt line. The prompt lines are:

Again Breakpoint Collection Display Expression Flip Go --space--
List Macro Options Proc-step Quit Register Step --space--
Unassemble Variables Where --space--

Page 82

DeSmet C Development Package, V2.

Error messages are displayed in line two. The fourth line gives the name of the
current procedure , the name of the current source fie and the current line number.
This line is always displayed. The remainder of the screen scrolls in the usualfashion.

3 Command Input

As with the SEE editor, commands are entered by typing their first letter. For
example, typing 'R' wil display the registers. Commands may be entered in upper
or lower case and the command need not be displayed on the prompt line to be
executed. The Again, Display, List and Unassemble commands can be preceded by
a decimal repetition count. The count specifies how many lines should be printed.

If a command has options, a prompt is issued to ask for them. For example: type '
for List and the following prompt wil be issued on the top two lines.

enter list line number or search string
exchange: 18

The cursor wil be at the first letter of ' 18' . Typing return or ESC means the
number is correct. To change it, the number may be overtyped or edited with the
following keys.

-:;

The right arow moves the cursor to the right.

oe- The left arrow moves the cursor to the left.

Ins The Ins key toggles between Exchange mode and Insert mode. The
prompt changes between 'exchange: ' and ' insert:

Del Deletes the character under the cursor.

rub out Deletes the character to the left of the cursor.

When any editing is complete, hit Return or ESe. During input, type control-C to

abort the command and return to the main prompt.

8.4 Expressions

Several commands wil accept expressions. Expressions follow the usual C rules
and are composed of varables and constats combined by operators.

Page 8.

DeSmet C Development Package, V2.

Variables can be referred to by name; case is ignored by D88. Only extern or static

variables, local variables in the current procedure and parameters of the current
procedure can be referenced. There is no way to reference locals of another
procedure. Statics are not scoped by fie -- the first entry in the symbol table is
used. Statics that are defined within a procedure have their name prefixed by the
procedure name and ' , e.g. static int i; in main is called MAIN I. The Variables

command wil list the names of variables and the Expression command wil display
their values.

Examples: argc next in main i

Registers may be referred to by name. Example: ax

Constants may be oftype int, long or float. Hex constants must star with '
but must omit the ' . Octal constants are not permitted. Strings and character

constants are as usual. Examples: 2 23. 1e6 01abe 'A "hello world!"

Member references may follow the ' .' or '

-::

,. operator.

Examples: stru. mem sptr-)-mem

A subset of the llsual C operators are supported. They are listed below in order of
precedence.

assignment
addition, subtraction
multiplication, division, modulus
contents of
address of
prefix minus
aray
parenthesis
function call

+ -

*1%

()

nameO

Examples of expressions:

2+2 argv (1) stru-)omem &vara ax=44 "hello (2) printf("%d" 2+2)

The last example shows that functions in the program under debug can be executed
by the Expression command. An expression followed by (arguments) wil be called

but referring to a function name not followed by the ' (' yields the offset of the
function.

Page 8.

DeSmet C Development Package, V2.

5 D88 Commands

To learn D88 try out all of the commands on the CB program. One caution: when a
function is first entered , locals and parameters cannot be accessed until you use the
Step command to move down to the first executable instruction.

(n) Again only has meaning after a Display, List or Unassemble command.
It displays the next n lines of bytes, source lines or disassembled

instructions respectively. If the count is omitted, 10 lines of source or 3

lines of bytes or disassembled instructions are displayed.

Prompts: none.

Output: Depends upon prior command.

Breakpoint sets a 'sticky' breakpoint. A breakpoint is a place where

execution wil stop after a Go command. A 'sticky' breakpoint is one
that remains in effect until changed or the Quit-Init command is
entered.

Prompts: enter number of sticky breakpoint, 1 2 or

There can be up to thee sticky breakpoints, numbered 1,2 and 3. Enter

the number of the breakpoint you wish to change.

Address-break Line-number-break Procedure Forever

Enter A or P if you want to break at an address or procedure. The
next prompt wil be:

enter procedure name or address

Enter an expression that indicates where you wish to stop, e. g. puts or

Gale.

Page 85

DeSmet C Development Package, V2.5

Enter L if you want to stop at a specific line number. The next prompt
wil be :

input line number

The fie is the current fie unless changed by the Options-Listfie
command. There is no default line number. Only line numbers for
lines containing executable instructions can be referenced. You
cannot break at a declaration or comment.

Enter F for Forever to remove a sticky break or Go to completion.

(n) Collection displays all of the elements of an aray or structure. The
optional repetition count is the number of aray elements that wil be
displayed. If a member is specified, that and all subsequent members of
the structure wil be displayed. The display format is the same as that
described under the description of the Expression command.

Prompts: input an array name or structure . member.

Output: Assuming the following program

char a(5J=O, 2, 3, 4, 51,
b (3 J (5 J = 0, 8, 9, 10, 11, 12, 13, 151 ,

c=&a;
struct tint i, k;1 str=tll, 22, 331'

st=&str;
main () t; 1

The following collections can be displayed.

input an array name
exchange: a
array at 0004(0)= 1 (1)= 2

or structure . member

(2)= (3)= (4)=

input an array name
exchange: b
array at 0009
(O)=array at 0009

or structure . member

(1) =array at OOOE (2) =array at 0013

input an array name
exchange: b (1)
array at OOOE(0)= 6 (1)= 7

or structure. member

(2)= (3)= (4)= 10

Page 8.

DeSmet C Development Package, V2.

input an array name
exchange: c
0004-::
(0)= 1
(6) =

or structure. member

(1)= 2
(7)= 3

(2)= 3
(8)= 4

(3)=
(9)=

(4)= (5)=

input an array name or structure . member
exchange: str
structure at 001A

input an array name or structure . member
exchange: str. 1= 11 OOOB 22 0016 33 0021

input an array name or structure . member
exchange: st-::i1= 11 OOOB

. -

22 0016 33 0021

The examples demonstrate the following rules:

1. If an array name is entered, the' address of the aray is printed followed by
the first 10 (or repeat) elements.

2. A pointer is handled the same way except that the number of elements is not
known. Notice that arys used as parameters are passed as pointers so the
number of elements is not known.

3. If the name of a structure element is entered, that and all subsequent
members are displayed. Either the ' .' or '

-:;

' operator may be used asappropriate.
4. If any other type of expression is entered, the value is displayed.

See the Expression command for the rules for element display.

(nJ Display displays memory in hex and ASCII. In contrast to Expression
types are ignored. The optional repetition is the number of lines to
display. The default number of lines displayed is three.

Prompts: input (segment: J offset

Normally a pointer name is input to see what it points to in hex. Notice
that if a variable name is input, the variable value is used (e.g. if i is 3
then a Display of i is the same as a display of 3). Use the address (&)
operator to see how a variable looks in hex - &i would display i in
hex. The data segment is always assumed. Use an overrde to display
other segments e.g. cs:O.

Page 8.

DeSmet C Development Package, V2.5

Output: 7 5B8: 07BE 2F 2A 09 43 42 43 48 45 43 4B 2E 43 20 20 2D 2D
75B8: 07CE 09 44 75 6D 62 20 43 75 72 6C 65 79 20 42 72 61
75B8: 07DE 63 65 20 43 68 65 63 6B 65 72 20 66 6F 72 20 43

Expression evaluates and displays the results of an expression. A procedure
can be executed by including its name and parameters in an expression
-- be careful of side effects. Only a subset of the normal C operators is
supported but othexwise expression rules for precedence, pointer
arithmetic and type conversion apply. The assignment operator can be
used to set a variable or register. Static varables withn functions have
their name preceded by the procedure name and an underscore.

zip () static int i;

i' would be referred to as ' zip in the debugger. Examples:

2+2 argc argv(l) nextin bp+4 puts("hello!") puts ptr-::offi=

Prompts: input an expression

Output: Chars are displayed in unsigned and ASCII if possible, e.

67.

Unsigned are displayed as unsigned and hex.

A pointer is displayed in hex. In addition, the string '

-:;

' prints and the
element pointed to are displayed. In the case of a pointer to a character,
up to 21 characters are displayed on the assumption that the pointer is
to a string.

Ints are displayed as decimal and hex.

Float and double are displayed as %9.2E.

Longs are displayed in decimal.

Arrays are displayed as 'array at' hex address.

Functions and structures are similar to arays.

Page 8.

Flip

Prompts:

Output:

En) Go

DeSmet C Development Package, V2.

Debugging graphic or full screen applications can be a real problem as
both debugger and application need to use the screen and the two
displays interfere with each other. The Flip command is part of the

mechansm designed to deal with ths problem.

The Flip command wil flp the screen. It only works on PC
compatibles as it is hardware dependent (see notes in CONFIG.C and

FLIP.A on configuring this capabilty). The idea is that the user should

have two screen displays one which is produced by the program
under debug and the other which is used for the D88 display. The
application screen is automatically restored before the Go command
resumes execution. The Flip sub-option of the Step and Proc-step
command must be used to restore the application screen before
executing any command that affects the screen display. When the

screen image is preserved in this way, the Flip command can be used to
display the application screen. Pressing any key wil return to the D88

screen.

none.

The application screen wil replace the D88 screen. Hit any key to
return to D88.

causes the program being debugged to execute. The user is prompted

to enter one breakpoint. The description of the Breakpoint command
describes how this breakpoint may be entered. The breakpoint may be
at the current address; if you enter an address breakpoint of IP, the
program wil execute until it returns to the starting point. This can be
used to execute one iteration within a loop.

After a Go command, 9 lines of the source are displayed. A '

-:;

' points

to the current line. The Option command can turn this feature off.

The optional repetition specifies how many breakpoints should be hit
before execution ceases. A count of lOGo s to IP would execute a loop
10 times.

If the Option command sets the ' Flip on Go ' option off , the output of
the debugged program and D88 output wil be intermixed. The default
is to display the debugged programs output before execution
CODlDlences.

Page 8.

Prompts:

Output:

(n) List

Prompts:

DeSmet C Development Package, V2.

Once started, a program wil execute unti a Breakpoint break is hit, the
Go breakpoint is hit, EXIT is called or control break is hit. In any
event the Go breakpoint wil be removed. Under DOS 1.x (and
CP/M- 86), EXIT and control break wil cause D88 to terminate.
Under MS-DOS 2.

, ..., '

normal end' prints and D88 continues. The
Forever option should be used if you wish the program to run to
completion or to a sticky break set by the Breakpoint command.

Address-break Line-number-break Procedure Forever

See the description of breakpoint entr under the Breakpoint command
description.

The program wil execute.

lists any ASCII fie. It is normally used to list the source of the
program being debugged. If the count is omitted, 10 lines wil be
listed. After a List command, the Again command can be used to list
more lines without entering the line number.

The current fie is the one listed unless the Options-Listfie command is
entered.

The prompt asks for the line number or a string. If something other
than a number is input, then the List command only lists lines that
contain the characters. Searching always stars from top of the file.
The search string option can be used to find a procedure definition or
variable references.

enter list line number or search string

The default is the current line number or the last line listed if the List
command was just executed. Enter return to list source from the
current line or a decimal line number or a search string.

Page 8.10

Output:

Macro

Prompts:

Output:

DeSmet C Development Package, V2.

enter list line number or search string
exchange: 1818 main (argc, argv)19 int argc;20 char *argv (); 21 int Chi22 char COli

if (ar 2) error ("no file name

, ""

read file (argv (1)

) ;

while (1) (

enter list line number or search string
exchange: read file25 read file (argv(l));

47 read file (fil)

remembers commands or sequences of commands. Four Macros can be
defined F1, F2, F3 and F10. All keyboard input is collected into a
Macro until another Macro command is entered. Once defined, a
Macro is executed by simply hitting the appropriate function key.
Macro can be up to 80 keystrokes long.

enter name of macro. Fl F2 F3 F10
Hit the appropriate function key.

enter another Macro command to end definition

Printed after the above prompt is answered. All input wil be
accumulated into a Macro until another Macro command is entered.

Macro is defined

Printed if the Macro command is invoked to end a Macro definition.

F10 is a 'permanent' Macro. If defined, it is run every time the screen
is re-written and its output is placed after the top 3 lines. This permits
variables to be permanently displayed.

Page 8.11

DeSmet C Development Package, V2.5

For example:

"i= , i, "

, j, " " ,

(hit M for macro command)
(hit function key 10 as name of macro)
(hit E for expression command)
(enter expression note the comma

mean a list of values)
(end macro definition)

F10

A line like i= 44 j= 2 k= 11 wil be displayed near the top of the
screen until F1 0 is redefined. The values are thus continually updated.

Options There are currently three options: flp screen on go, list after go, and
list fie name.

The Flip-on-go option allows D88 output to be intermixed with user
output. The default is to flp the screen before a go executes. The
disadvantage of not flpping is that the output of the application wil be

intermixed with D88 output. The disadvantage of the default is the
flashing that occurs if the Flip is not needed.

The Go-list option can disable the listing of source after a go command.
Every Go, Proc-step and Step command sets the current listfie name to

the fie containing the current statement. This name is used by the List,
Breakpoint and Go commands. Use the List-name option to change the
name.

Prompts: Flip-on- Go- list List-name

If F is typed,

flip screen on Go (y or n) ?

Enter 'Y' or ' ' to set the option on

, '

N' or ' ' to turn it off.

If G is typed,

list after a Go (y or n) ?

Enter 'Y' or ' ' to set the option on

, '

N' or ' ' to turn it off.

Page 8.12

DeSmet C Development Package, V2.

If L is typed,

input list file name

Type the desired fiename.

Output: none.

Proc-step The Proc-step command prints the current source line and allows the
user to execute it. Proc-stepdiffers from Step in only stopping on lines

in the current procedure. Proc-step also stops after a return so you can
Proc-step back to the callng procedure. Step wil stop on any line.

A Flip option allows the user screen to replace the D88 screen during
stepping. If this option is not invoked before statements that affect the
screen, then program output wil be intermixed with D88 output.

When the screen is flpped, there is no prompt but the user must stil hit
space to execute the next statement. Typing ' F' for Flip wil restore the

D88 prompt.

Only executable lines wil show up while stepping; declarations and
comments are not listed.

The procedure MAIN
during stepping.

file B:CB. li ne 18 line is updated

Prompts: Flip Proe-step Step spaee to Proe-step. default=quit.

F wil flp the screen. S wil change from Proe- step to Step and
step the current line. P wil change back to Proe- step and step the

line. Space wil Proe- step or Step, whichever is current. If the
screen is not flpped, the next line wil print. Typing anything else wil
terminate stepping.

Output: When the screen is not flpped, the current line prints as a prompt.

Page 8.13

Quit

Prom pt:

Output:

DeSmet C Development Package, V2.

The Quit command terminates a debugging session and either exits to
the operating system or stars a new session. On exit, the user screen is
restored.

The Initialize option allows debugging to begin again. Caution: fies
are not closed. You may run out of fies or not be able to re-open fies.

Quit: Exit Initialize

E causes the user screen to be restored and D88 exits. If the program
has been EXITed or interrpted with control break, you cannot Quit
or Initialize. Othexwise, typing 'I causes the following prompt:

input command line

Enter the par of the command tail that would follow D88, if D88 were
being executed; e.

CB CB. C

Press the return key if you change your mind and do not want to start
over.

D88 quits or starts over with the indicated command tail.

Register The Register command displays all the registers. Use the Expression
command to set a register to a value.

Prompts:

Output:

Step

none.

AX=7500 BX=FFEB cx=oooo DX=OOOO SI=FFFF DI=07BE BP=FFBE SP=FF90
DS=757E SS=757E ES=757E CS=729E IP=0003 FL=F206

The Step command prints the current source line and allows the user to
execute it. Step differs from Proc-step in stopping at every line not
just lines within the current procedure. If you step a line that contains
a call to another procedure, you wil step though the called procedure.
See the description of the Proc-step command for details on this
command as Step and Proc-step are othexwise identical.

Page 8.14

DeSmet C Development Package, V2.5

(n) Unassemble The Unassemble command disassembles some
instructions. The repetition count says how many instrctions should
be disassembled. The default is 10. The Again command can be used
after an Unassemble command to print more instructions without
re-entering address. Disassembled output follows normal assembler
rules except that relative jumps print their target as absolute numbers
(A=hh).

If the repetition count is 'I', the Unassemble command wil disassemble
one line and prompt with a . Pressing the space key causes the

instruction to execute. This continues until the user presses a key other
than the space key

Prompts: input (segment: offset

The default address is the current one. If an expression is entered, it is
assumed to refer to an instruction in CS:. An explicit segment can be
entered, e.g. 0123: Octa.

Output: 729E:0003
729E:0004
729E:0006

8B EC
83 EC 04

PUSH
MOV

SUB
BP , SP
SP, 0004

Variables The Variables command wil list the program variables, optionally
with values. Pressing return to the prompt wil produce a four across
list of all variable names. The locals accessible to the current procedure
are listed first, followed by the publics. Both are sorted. If a name or
name pattern is entered, the variables are listed with their value. The
values are formatted according to the rules for the Expression

command. An asterisk C*' at the end of a name means match any name
that stars with the preceding letters. An asterisk by itself wil list all
varables with values.

Caution: before the first instrction of a procedure is executed, the
stack frame is not established and parameters wil not be printed
correctly.

Page 8.15

Prompt:

Output:

Where

Prompts:

Output:

DeSmet C Development Package, V2.

input variable name or pattern (a* means start with

input variable name or pattern (a* means start with
exchange:

ARGC ARGV
ATOI ATOL

CSTS
EXIT GETCHAR III
INDEX JJJJJ JJJJ
JJJ MAIN
PUTCHAR PUTS RINDEX STRCAT
STRCMP STRCPY STRLEN STRNCAT
STRNCMP STRNCPY

input variable name or pattern (a* means start with a)
exchange: i *

III =
II =
INDEX =
I =

5 0005
3 0003

function
2 0002

at 031E

The Where command list the current procedures. The name, fie and
line number of every procedure currently executing wil print.

none.

procedure READ FILE file CB. C line 56
procedure MAIN file CB. C line 25+9

Page 8.16

DeSmet C Development Pacakge, V2.

9. Utility Programs

1 Dump

The dump utilty program is used to display the contents of a fie in hex. It
available in both source (.C) and executable (.EXE) form.

To invoke the program, enter

dump -(filename;:

The dump program displays 16-bytes per line with each line showing the offset to
the first byte in the line, the 16 hex values, and the character equivalent enclosed
between asterisks (*). For example:

0000 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 *ABCDEFGHIJKLMNOP*
0010 51 52 53 54 55 56 57 58 59 SA 00 00 00 00 00 00 *QRSTUVWYZ...... *

9.2 CLIST

The clist utility reads C source programs and produces a listing, or a fie, which
contains a paginated, line numbered listing of the C source lines and a symbol
cross-reference map.

To invoke the clist program, enter
clist -(filename;: ... (option

-(fiename;:... - a list of the C source fies to be listed, in the order that they are to
be listed. If no extension is given

, '

C' is assumed. Clist does not
automatically read the " include" fies so they should be listed first. This
is to prevent the include fie from being listed by every source fie that
includes" it. Note: if you specify more than one fie, the symbols wil

be combined into one cross-reference map.

Options: The case of the option characters is not significant. Each option must
be preceded by the minus-sign

, '

, character to distinguish it from a
fiename. The options are:

Foeilename:: identifies the fie containing the dilename;:s to be
listed.

Page 9.

DeSmet C Development Pacakge, V2.

L..size::/-P..size:: sets the page length used by the clist program
for generating pagination. The default is 66 lines.

eliminates the cross reference listing

Odilename:: supplies the name of the output file for the listing.
Without this control, the first name in the list of fienames
is used with the extension, ' . If no extension is given on
the fiename, ' L' wil be used automatically. If you wish
to list on the printer use -OPRN:

T..size:: sets the width for tab characters (the maximum number of
spaces that a tab occupies). The default expansion size is 4.

- W ..size:: sets the width of the listing. Lines wider than the width are
wrapped to the the next line. The default width is SO.

For example
clist blip.

wil generate a file named blip. l with the following contents

BLIP. C dd/mm/yy
main ()

int i;
hh : ro : s s Page 1

printf (" Table of Characters\n
for (i = 0; i .: 256; i++) t

printf (" Character %d prints as %c\n i);

----XREF----

main
printf

The number sign

, '

, following the 'main ' symbol in the cross-reference listing
indicates that the symbol was declared on that line. Unfortnately, clist is stupid and
only supplies the declaration line information for procedures or data declarations
which begin in the first column.

Page 9.

DeSmet C Development Pacakge, V2.

3 PROFILE

Profie is a performance monitoring tool for use with the C88 compiler. It provides
a statistical measure of the amount of time spent in a program or procedure within
the program.

With the version 2.3 or later compiler, specifying the check option (-C) for both
C88 and BIND wil create a .CHK fie. The profier uses the .CHK fie to produce
symbolic output instead of the standard hexadecimal output.

Profie only works on the IBM-PC and very similar machines as it manipulates the
hardware timers. It also requires the use of MS-DOS V2.xx or later.

To invoke the profiler, type:
A)-profile

The profier wil load and request the command line of the program to be analyzed.
Enter the command line as if you were invoking the program normally. The
profier wil then display one of the following two menus:

If a corresponding .CHK fie exists:

All List-procs Procedure Range Quit Start

or if no .CHK fie exists:

Range Quit St art

Make a menu selection by typing the first character of the appropriate menu item.

All indicates that the entire program is to be monitored and broken down
by procedure.

List-procs displays the procedure names and addresses. When entering
the name of the procedure, the wildcard characters * and? may be
used. * wil match anything, ? wil match any single character. All
names which match the pattern wil be displayed.

Procedure indicates that a single procedure is to be monitored. The
output wil be displayed with the line numbers within the procedure.

Range indicates that a specific range of addresses within the program is to
be monitored.

Page 9.

DeSmet C Development Pacakge, V2.5

Quit aborts the current profiing session.

Start begins the execution of the program.

After the monitored program exits, control is returned to the profier which wil
display the execution histogram and the following menu:

Disk-list List-again Quit

Disk-list indicates that the profilng histogram should be written to a disk
file. The profier wil prompt for the name of the fie.

List-again indicates that the histogram should be redisplayed from the
beginning.

Quit exits the profier.

Use the space bar to display the next set of procedures or line numbers in the
histogram. The histogram includes the entries " system" and "other

. "

system" is

the amount of time measured outside of the executing programs code segment.
other" is the amount of time spent within your code segment but outside of the

measured range.

The profier also uses two other programs, profstar.exe and profend.exe. These
programs may be placed in the current directory or in a directory identified by the
PATH environment varable.

Sampling Algorithm

Internally, the profier maintains 1024 counters which are used to monitor the
activity within certain regions of memory. The location and size of these regions
depend on the range information. The size of each region is determined by dividing
the entire range into 1024 equal size pieces. The minimum size of a given piece is 1
byte. For example, if the selected range is OxIC to Ox401C, the size of each region
is 16 bytes. Each time the timer interrpt is generated, the counter associated with
the location of the instruction pointer is incremented. In this example, an IP value
between Ox 1 C and Ox2C wil appear in the first region. You can see that the
selection range sets the granularity of the sampling mechanism. Shorter ranges lead
to finer granularity and therefore more accurate measurements. Because of the
granular nature of the sampling method, some sampling errors may occur. If the
end of one procedure and the beginning of another procedure happen to fall into the
same sampling region, then the second procedure wil inerit the count from the end
of the first procedure.

Page 9.4

DeSmet C Development Package, V2.

10. The CSTDIO.S Standard Library

10. 1 Introduction

This section describes the standard librar, CSTDIO. , for the C88 C compiler and
ASM88 assembler. This library includes routines similar to routines available in
UNIX with some inevitable differences due to the MS-DOS Operating System.

. All of the routines are in the CSTDIO.S library fie provided on the distribution
disk. This fie must be on the default driveldirectory, in a directory listed in the
PATH system parameter, or on the driveldirectory referred to by the ' L' option
for BIND to execute correctly.

There is a CSTDI07.S librar that has the same functions as the CSTDIO.S library
but assumes the availabilty of the 8087 math chip to perform the floating-point
operations. To use the 8087, rename CSTDI07.S to CSTDIO.

10.2 Names

Public names starting with the underline character

(' '

) are reserved for C88
internal routines and should be avoided. Names of this fOrm are also employed for
user callable routines such as _move () whose names might conflct with user
names.

C88 automatically appends the underline character

(' '

) to the end of public names
to avoid conflcts with assembly language reserved words. ASM88 does not do this
so the underline must be manually appended to publics used to link with code
generated by C88. For example, the C pu t s () routine should be referred to as
put s - from assembler. BIND ignores the case of publics, unlike UNIX, .so

put s - matches the name PutS -

10. 3 Program Initialization

BIND inserts a jmp - cset up as the first executable instruction in the program.
- CSETUP performs the following initialization functions:

1. Sets the data/stack segment size to the lower of: available memory, 64K, or the
size of the static data area plus the BIND -S option

2. Formats argc and argv (J from the Program Segment Prefix
3. Zeros the Uninitialized Data Area, and
4. Calls main (argc, argv)

Page 10.1

DeSmet C Development Package, V2.5

Assembly language main programs that require normal initialization should contain
the following:

PUBLIC MAIN
MAIN

The initialization code wil set the SS, DS and SP registers so that there is the largest
possible stack unless the BIND S' option is used to restrict the stack size. The stack
grows towards the unitialized data area. The figure below shows the memory
layout after the initialization code has run:

ST ACK

FREE MEMORY

UNINITIALIZED DATA

INITIALIZED DATA

CODE

hi gh memory

showspO

memoryO

low memory

The memory between the end of the uninitialized area and the stack is not normally
used by C88 or the program (unless the program needs an inordinate amount of
stack). This area is considered to be free memory. This memory area can be
accessed directly by using the _memory () and - showsp () routines to calculate its
extent. Another way to access this memory is to use the malloc () routine. DO!1
use both methods. Remember to leave enough space for the stack to grow.

The -A option of BIND inhibits the call to csetup. Execution commences with
the first instruction of the first fiename specified to BIND. On entry, the registers
have the following values:

ES, OS

Address of Code Segment. Execution stars at CS : 0 .

Address of Data Segment.
Address of Program Segment Prefix
Stack size set by BIND

Page 10.

DeSmet C Development Package, V2.

The library module that contains - c s et up also contains the following functions
thus they cannot be replaced in CSTDIO.S without removing _csetup.

ci () co () csts () exit
get char () put char () puts

() _

memory ()
setsp () _showcs () _showds () _showsp ()

10.4 Calling Conventions

Arguments to a function are pushed on the stack, rightmost argument first. It is the
responsibility of the callng function to clean up the stack. For example

int i;
zip (i, 6);

would generate the following code

mov
push
push
public
call
add

ax,

word i
zip

zip
sp,

The word modifier is required because C88 allocates two bytes for ints. The add
sp, 4 removes the two words that were pushed as parameters to zip - ' Note the
C88 appended ' ' on names. If there had been no local variables defined in the
function, the clean-up code would have been

mov sp, bp

which is faster.

Data is pushed on the stack as follows:

char pushed as a word, with high-order byte set to zero
mov AL, data
mov AH, a
push AX

Page 10.

int
unsigned

long

float

doub 1 e

struct

DeSmet C Development Package, V2.5

pushed as a word
push WORD data

pushed with least-significant word pushed last
push WORD data (2J
push WORD data (OJ

Changed to double and pushed with least-significant
word pushed last

mov s i, offset data
PUBLIC FLOADE ; load float
call FLOADE
PUBLIC FPUSHcall FPUSH

; push double

pushed with least-significant word pushed last
push WORD data (6J
push WORD data (4J
push WORD data (2J
push WORD data (OJ

push (sizeof (struct) 1)).). 1 words, with
least-significant word pushed last.

mov ex, nn ; size in words
sub sp, cx ; make room on stack
mov di, sp ; target
mov si, offset data ; source
mov ax, ds ; setup
mov es, ax e scld ; set direction up

rep movsw ; copy to stack
10.5 LIBRARY CONVENTIONS

Called functions are responsible for preserving CS, DS, SS, SP, and BP across
the function call. All other registers need not be maintained. The usual preamble
for a called function is

PUBLIC fname
fname :

push bp
mov bp,

; save old frame pointer
; establish local frame

Page 10.4

DeSmet C Development Package, V2.

For functions that don return structures, parameters begin in the local frame at
(bp+4 J, and continue upward based on the size of each parameter. Thus for the
fragment

blip(x,

y,

int x;
long y;
double z;

the parameters would be referenced in Assembler as

mov
mov
mov
lea

cx, WORD (bp+4 J
ax, WORD (bp+6J
dx, WORD (bp+8 J
si, (bp+l0J

; x
; lsw of y
; msw of y
; addr of z

For functions that do return structures, (bp+4 J contains a pointer to where the
structure should be returned. So if the above fragment was

struct foo blip(x,

y,

the parameters would be

mov
mov
mov
lea

cx, WORD (bp+06J
ax, WORD (bp+08)
dx, WORD (bp+10 J
si, (bp+12J

; x
; lsw of y
; msw of y
; addr of z

Local variables are allocated below the current frame pointer regardless of what the
function returns, so that the fragment

int aa (2 J ;
long b;

would be referenced as

sub
mov
mov

sp,
ax, (bp-4

dx, (bp-8

; allocate space for locals
; aa (lJ
; msw b

Page 10.5

DeSmet C Development Package, V2.

The stadard exit sequence is

mov
pop
ret

sp, bp ; reclaim any local space
; old frame pointer
; caller will clean up stack

Values are returned from functions according to the following tablechar returned in AX. char values are returned in AL with AHint set to zero
unsigned

long returned in OX: AX. (AX contains lsw)

double
float

returned on floating point stack (s/w or S087).

struct returned to address in (bp+4)

10.6 Disk Input/Output Routines

In this implementation of C I/O, procedures like get c () are functions rather than
macros and a file identifier FILE is simply an integer containing the file number
rather than a pointer to a structure. This change means that read () and get c ()
calls may be intermingled and there is little difference between open () and
fopen () on a file.

In UNIX there is a distinction between fie and stream I/O. Crudely stated, the
functions that have 'f as their first letter (fop en () , fread () etc.) deal with
streams, and other primitives (open (), read () etc.) access fies. These two
forms of 1/0 are compatible -- fopen () may be used to open a fie and then

read () used to read it -- but it is best to use either the stream or fie primitives only
for a particular fie for portability. The FILE type is defined in the stdio. h
include fie and is simply an int type. This int contains the fie number the
same number returned by open () and creat (). To use the stream routines with
a file opened with the open () , merely pass the fie number.

The stream style of I/O primitives are: fop en () to open a fie, fread () ,
fgets () or fgetc () (getc ()) to read, fwrite (), fputs () or fputc ()
(putc ()) to write, fseek () to seek, fflush () to write out internal buffers, and
fclose () to close.

The fie type I/O primitives are: open () , creat () , read

() ,

lseek () , and close ().
write ()

Page 10.

DeSmet C Development Package, V2.

The maximum number of fies that can be open at one time is either 20, or the
number specified in CONFIG.SYS , whichever is less. See section 2.3 for details
about CONFIG.SYS. New fies are creat () 'd and old fies are open

() '

A closed fie may be rename () 'd or unlink () 'd (deleted).

Three predefined fie numbers may be used to read from or write to the console.
To use them , include the following defines in the program:

#define stdin
#define stdout
#define stderr

10.7 Math Routines

If any of the transcendental or sqrtO functions are used, include the fie math. h or
the equivalent declarations to specify them as returning double

math. h includes the statement

extern int errnOj

errno is set to a non-zero value when: a floating point stack errors, an argument to
a math routine is out of range, or the result of a math routine would
under/overfow. Error codes and names (defined in math. h) a.re:

ESTK FIP stack overfow. The most probable cause is callng a
function that returns a doub 1 e without declaring it as such to the
compiler. After eight calls, the flp stack wil be full.

EDOM invalid argument, i.e., sqrt(- 0).

ERANGE result would underloverfow, i.e., tan(PI/2.0).

The function rerrno () is called by the floating point routines whenever an error
is detected. rerrno () prints out an appropriate error message and calls exit

() .

In order to bypass this effect, install the following function in your program

rerrno () i j /* null function to suppress printing *

Page 10.

DeSmet C Development Package, V2.5

10. 8 IBM-PC Screen and Keyboard Interface

A number of functions have been written to simpliy the interface between C
programs and the IBM-PC and its clones. These routines are not in the standard
CSTDIO.S library but are distributed in source form in the fie PCIO.A. To use
these routines, they must be assembled and bound in. For example:

A)-asm88 b :pcio
A)-bind b:blip b:pcio

See the comments in the IBM Technical Reference Manual for details on the BIOS
interface used by PCIO.

See the LIB88 chapter for details on installng PCIO.O in CSTDIO.

10. 9 Alphabetical Function Index

Functi rar ren
int abs(int) CSTDIO. MATI-
double acos(double) CSTDIO. MATI-TRG
double asin(double) CSTDIO. MATI-TRG
double atan(double) CSTDIO. MATI-TRG
int atoi(char * CSTDIO. STRING-CONVRSION
double atof(char * CSTDIO. STRG-CONVRSION
long atol(char * CSTDIO. STRG-CONVRSION

char * calloc(unsigned, unsigned) CSTDIO. MEMORY-ALATION
double ceil(double) CSTDIO. MA TI-

void chain(char * , char * CSTDIO. OS-TASK CONTOL
char ciO CSTDIO. CONSOLE-I/O
int close(int) CSTDIO. FIE-OPEN/CLOSE
void co (ch) CSTDIO. CONSOLE-I/O
double cos(double) CSTDIO. MATI-TRG
double cot(double) CSTDIO. MATI-TRG
int creat(char * CSTDIO. Fil-OPEN/CLOSE
char cstsO CSTDIO. CONSOLE-I/O

void dates(char * CSTDIO. OS-SYSTE INRFACE

ble exp(char * CSTDIO. MATI- TRSCENENAL
double exp 1 O(double) CSTDIO. MATI-TRSCENENAL
void exit(char) CSTDIO. OS-TASK CONTOL

Page 10.

DeSmet C Development Package, V2.

double fabs(double) CSTDIO. MATI-
int fclose(int) CSTDIO. FI-OPEN/CLOSE
int fgetc(int) CSTDIO. CHAC1ER-I/O
char * fgets(char * , int" int) CSTDIO. STRING-I/O
double floor(double) CSTDIO. MATI-
int fopen(char * , char) CSTDIO. FllE-OPEN/CLOSE
int fprintf(int, char *

, ...

CSTDIO. FORMTI OUTUT
int fputc(char, int) CSTDIO. CHC1ER-I/O
int fputs(char * , int) CSTDIO. STRING-I/O
double frandO CSTDIO. RAOM NUERS
int fread(cah * , int, int, int) CSTDIO. FIE-I/O
int free(char * CSTDIO. MEORY ALATION
double frexp(double, *int) CSTDIO. MATI-COMPONES
int fscanf(int, char *

, ...

CSTDIO. FORMTID INUT
long fseek(int, long, char) CSTDIO. FIE-I/O
int fwrite(char * , int, int, int) CSTDIO. Fl- I/O

char getcharO CSTDIO. CHAAC1ER-I/O
char * gets(char * CSTDIO. STRING-I/O
int getc(int) CSTDIO. CHAC1ER-I/O
int getw(int) CSTDIO. CHAC1ER-I/O

char * index(char * , char) CSTDIO. STRG-OPERATIONS
int isalnum(ch) CSTDIO. STRING-TYPING
int isalpha(ch) CSTDIO. STRING-TYPING
int isascii(ch) CSTDIO. STRING-TYPING
int iscntrl(ch) CSTDIO. STRING-TYPING
int isdigit(ch) CSTDIO. STRING-TYPING
int islower(ch) CSTDIO. STRING-TYPING
int isprint(ch) CSTDIO. STRING-TYPING
int ispunct(ch) CSTDIO. STRING-TYPING
int isspace(ch) CSTDIO. STRING-TYING
int isupper(ch) CSTDIO. STRING- TYPING

double ldexp(double, int) CSTDIO. MATI-COMPONENTS
void lmove(int int, int, int, int) CSTDIO. CHARAC1ER-ACCESS
double log (double) CSTDIO. MATI-TRSCENDENT AL
double log 1 O(double) CSTDIO. MATI- TRSCENENTAL
void longjump(char * , int) CSTDIO. GLOBAL GOTO
long lseek(int, long, char) CSTDIO. Fl- I/O

char * malloc(unsigned) CSTDIO. MEORY AlOCATION
double modf(double, *double) CSTDIO. MATI-COMPONENTS
void move(int, char * , char * CSTDIO. CHC1ER-ACCESS

Page 10.

DeSmet C Development Package, V2.5

int open(char * , char) CSTDIO. FIL-OPEN/CLOSE

double pow(double, double) CSTDIO. MA'I- TRSCENENTAL
int printf(char *

, ...

CSTDIO. FORM TI OUTUT
void puts(char * CSTDIO. STRING-I/O
int putc(char, int) CSTDIO. CHACTR-I/O
void putchar(char) CSTDIO. CHACTE-I/O
int put:v(unsigned, int) CSTDIO. CHACTER-I/O

void qsort(char * , int, int, (*)0) CSTDIO. SORT

unsigned randO CSTDIO. RAM NUERS

int read(int, char * , int) CSTDIO. FI-I/O
char * realloc(char * , unsigned) CSTDIO. lvORY ALATION
int rename(char * , char * CSTDIO. FI-DIRCTORY
long rewind(int) CSTDIO. FIE-I/O
char * rindex(char * , char) CSTDIO. STRG-OPERATIONS

void scanf(char *

, ...

CSTDIO. FORM TID-INUT

void scr - aputs(char * , char) PCIO. CONSOLE-IBM PC
char scr _ PCIO. CONSOLE-IBM PC
void scr - elrO PCIO. CONSOLE-IBM PC
void scr - elrlO PCIO. CONSOLE-IBM PC
void scr- elsO PCIO. CONSOLE-IBM PC
void scr co(char) PCIO. CONSOLE-IBM PC
char scr - cstsO PCIO. CONSOLE-IBM PC
void scr - cursoffO PCIO. CONSOLE-IBM PC
void scr - cursonO PCIO. CONSOLE-IBM PC
void scr Jowcol(row ,col) PCIO. CONSOLE-IBM PC
void scr - scdnO PCIO. CONSOLE-IBM PC
void scr - scrdn(int int int int int) PCIO. CONSOLE-IBM PC
void scr - scrup(int int, int int, int) PCIO. CONSOLE-IBM PC
void scr scupO PCIO. CONSOLE-IBM PC
void scr - setmode(char) PCIO. CONSOLE-IBM PC
void scr - setu pO PCIO. CONSOLE-IBM PC
char scr sinpO PCIO. CONSOLE-IBM PC
int setjump(char * CSTDIO. GLOBAL GOTO
void setmem(char * , int, char) CSTDIO. CHACfR-MOVIG
double sin(double) CSTDIO. MATH-TRG
void sprintf(char * , char *

, ...

CSTDIO. FORM TI OUTUT
double sqrt(double) CSTDIO. MATH-TRSCENENTAL
void srand(int) CSTDIO. RAM NUMERS

void sscanf(char * , char *

, ...

CSTDIO. FORMTID INUT

Page 10.

char *

int
char *

unsigned
char *
int
char *

double
void
char
char

char
int

int

DeSmet C Development Package, V2.

strcat(char * , char *) CSTDIO.
strcmp(char * , char *) CSTDIO.
strcpy(char * , char *) CSTDIO.
strlen(char *) CSTDIO.
strncat(char * , char *, int) CSTDIO.
strncmp(char * , char * , int) CSTDIO.
strncpy(char * , char * , int) CSTDIO.

tan(double)
times(char *
tolower(char)
toupper(char)

CSTDIO.
CSTDIO.
CSTDIO.
CSTDIO.

ungetc(char, int)
unlink(char *

CSTDIO.
CSTDIO.

write(int, char * , unsigned) CSTDIO.

Page 10.

STRG-OPERATIONS
STRG-OPERATIONS
STRG-OPERATIONS
STRG-OPERATIONS
STRG-OPERATIONS
STRG-OPERATIONS
STRG-OPERATIONS

MATI-TRG
OS-SYSTEM INRFACE
CHACTER-TYPING
CHACTER-TYPING

CHACTER-I/O
FIE-DIRCTORY

FIE-I/O

CHARACTER - ACCESS
char ch, sp, tp;
unsigned port, wd, num,
char _inb (), Jeek ()
unsigned _inw () ;
void _outb (), _outw () ,

sseg, tseg;

lmove () , Joke () ;
ch = _inb (port) ;
wd = _inw (port) ;
outb (ch, port);
outw (wd, port);
lmove(number sp, sseg,
ch = Jeek (sp, sseg);
Joke (ch, tp, tseg);

inb and inw read the byte ch and word wd, respectively, from the indicated
port.

tp, tseg) ;

outb and outw write the byte ch and word respectively, of data out to the

indicated port.

lmove moves num bytes from the 8088 physical address at sseg:sp to tseg:tp .
For example, to move the color display frame buffer at address 0 xB 800 : 0 to a
local buffer showds provides the C program data segment - DS)

lmove(4000, 0, OxB800, buffer, _showds());

yeek is used to retrieve a byte ch from the 8088 physical address at sseg:sp .

yoke is used to store the byte ch of data to the 8088 physical address at tseg:tp .

NOTE: lmove takes advantage of the 8088 instrctions for a fast data move. It
handles overlapping moves correctly so that

lmove (3920, 0, OxB800, 80, OxB800);

wil move OxB800: 3919 to OxB800: 3999, OxB800: 3918 to OxB800: 3998
etc. rather than propagating OxB800:

CHARACTER I/O
int fp, w, data;
char eh;
int get char (), gete () ,

putehar(), pute(),
fgete () ,
fpute () ,

getw() ,
putw () ;

unget e () ,

data = get char () ;
data = put char (eh) ;

data = gete (fp)
data = pute (eh, fp);
data = fgete (fp)
data = fpute (eh, fp);
data = getw (fp)
data = putw(w, fp);

data = ungete (eh, fp)

getehar returns the next character from stdin or - 1 if an error, end of file , or a
CTR-Z was found. putehar writes eh to stdout. Linefeed C\n is converted to

carriage return - linefeed C\r\n). Output wil stop if CTRL-S is entered, and
resume when any other key is pressed. Each output wil check for a CTRL-C entry,
and terminate the program if it was pressed. putehar returns eh , or - 1 on error.

gete andfgete return the next character from the fiefp, or -1 if an error, or end of
fie was sensed. pute andfpute write ch to the filefp fp must have been opened
prior to the call. The functions return eh , or - Ion error.

getw returns the next in t from the fie fp, or - 1 if an error, or end of file was
sensed. putw writes the int to the fiefp fp must have been opened prior to
the call. putw returns or - 1 on error.

ungete pushes the character eh back onto the fiefp. The next call to gete orfgete
wil return ch.. ungete returns or - 1 if it can t push the character back. fseek
clears all pushed characters. EOF (- 1) can t be pushed.

SEEALSO:scanf(), fread(), printf(), fwrite()

NOTE: getehar , getc and putehar are functions rather than macros.

getehar wil hangup reading redirected input under DOS 2.X and higher. Use
get c (stdin) if the input could be redirected.

There is no way to distinguish the return from put w (-1, fp) from an error.

CHARACTER MOVING
unsigned number;
char *sourceptr, *targetptr,
void _setmem, _move () ;

ch;

setmem (targetptr, number, ch);
move (number, sourceptr, targetptr);

setmem sets number bytes of memory starting at targetPtr to the byte value ch .

move moves number bytes from sourcePtr to targetPtr .

NOTE: move takes advantage of the 8088 instructions for a fast data move.
handles overlapping moves correctly so that

char buffer (80) ;
move (79, buffer, &buffer (1)) ;

wil move buffer (78) to buffer (79), buffer (77) to buffer (78) etc.
rather than propagate buffer (0). Use _setmemO to fil a range of memory with
a value.

char c, ch;int tval;int isalnum () ,
iscntrl

() ,

isupper () ,
isspace() ;

char tolower

() ,

CHARACTER - TYPING

isalpha () ,
isdigit

() ,

isprint

() ,

isascii

() ,

islower () ,
ispunct () ,

tval = isalnum(c);

toupper () ;

ch = tolower (c) ;
ch = toupper (c) ;

The

functions return either true (non-zero) orfalse (zero) accordingly as
c can be classified as follows:

isalnum (c)
isalpha (c)
isascii (c)
iscntrl (c)
isdigi t (c)
is lower (c)
isupper (c)
isprint (c)
ispunct (c)
isspace (c)

c is either a letter or a digit
c is a letter
c is less than Ox80
c is either Ox7F, or less than Ox20 (space)
c is a digit
c is a lower-case letter
c is an upper-case letter
c is a printing character, Ox20 (space) through Ox7E
c is neither a control nor an alphanumeric character
cisaOx20(space), ' \t' (tab), ' ' (carrage return),

' (linefeed), or I \f I (formfeed).

tolower transforms upper-case letters to lower-case while toupper performs the
opposite transform. Both functions return c unchanged if it isn t the correct case.

NOTE: These are functions rather than the usual macro implementation.

CONSOLE - IBM-

char ch, newMode, attr, *string;
int lines, frow" fcol, trow, tcol;
char scr ci (), scr csts (), scr sinp
void scr=clr (), sc clrl (), sc cls () ,

scr co (), scr aputs (); scr cursoff ()
scr curson (), scr rowcol () ,
scr scdn () , scr scrd

() ,

scr scrup () ,
scr setmode () , scr setup () ;

scr setup () ;
ch = scr ci () ;
ch = scr csts () ;
ch = scr sinp () ;
scr clr

() ;

scr clrl

() ;

scr cls () ;
scr co (I A '

) ;

scr aputs (string, attr);
scr cursoff ()
scr curson () ;
scr rowcol (trow, tcol);
scr scd

() ;

scr scrdn (lines, frow, fcol,
scr scup () ;
scr scrup (lines, frow, fcol,
scr setmode (newMode) ;

trow, tcol) ;

trow, tcol) ;

scr _setup must be called prior to any of the screen routines if the screen is currently
in 80 column mode or if scr curson with a monochrome display is used. This
routine sets the value of the global variables described in the Note below.

sa ci is like c i () but uses its own translation table for command characters. It
returns the next character from the input queue.

sa csts returns the next character from the queue, or 0 if no character is available.
If a character is present, it is equivalent to a cst s () followed by a c i () .

sa _sinp returns the character under the cursor on the screen.

sa _clr erases the entire screen and sets the cursor to the home (0,0) location.

sa clrl erases everything from the cursor location to the end of the line.

sa cls erases everything from the cursor location to the end of the screen.

CONSOLE - IBM-
scr co is the same as co () it writes a single character out to the screen.

scr aputs writes string str to the display with attribute attr. \ r ' moves to the
begining of the line, and ' \ n ' moves to the next line. Moving off the bottom line
causes scrollng.

scr _cursoff turns the cursor off; scr _curson turns it back on.

scr rowcol moves the cursor to row trow and column tcol.

scr _scdn scrolls the screen down one line, but leaves the top two lines alone.

scr _scrdn scrolls the given area down lines. The area is defined by the character
locations (jrow,fcol

),

(trow, tcol).

scr _scup scrolls the screen up one line, but leaves the top two lines alone.

scr _scrup scrolls the area up lines. The area is defined by the character locations
ifrowfcol

),

(trow tcol

scr setmode sets the mode of the color card. newMode must be between 0 and 6.
See the Note below.

NOTE: All of the above functions are in the fie PCIO.

scr _setmode and scr _setup manage the following global data.

char scr cols;
char scr rows;
char scr mode;

char scr page;
char scr attr;

/* number of character positions */
/* number of lines *
/* current screen mode:

o = 40 col. BW
1 = 40 col. color
2 = 80 col. BW
3 = 80 col. color
4 = 320 x 200 color graphics
5 = 320 x 200 BW graphics
6 = 640 x 200 BW graphics
7 = 80 col. BW

* /

/* current active display page */
/* current character attribute.

Normally 7 for white on black but
can be set for any attributes
see Technical Reference Manual *

CONSOLE I/O
char
void

ch, ci

() ,

co () ;
csts () ;

ch = ci

() ;

co (ch) ;
ch = csts

() ;

ci reads the next character from the keyboard . If one is not available, ci waits until
one is entered. There is no check for CTR-

co writes the character ch on the screen at the current cursor position. The cursor is
advanced to the next position on the screen. There is no automatic conversion of the
newline character \n into the \r\n (carage return, line feed) sequence needed by
the screen driver. No test for CTRL-C is performed.

csts is similar to ci except that if no character has been typed in, it wil return zero
instead of waiting for a character from the keyboard. The character is retained and
wil be returned by the next call to ci.

SEE ALSO: get char (), scr ci (), scr co (), scr csts ()

NOTES: and csts return a zero as the first character of an extended key
sequence, and return the extended key code on the next call.

In order to decode an extended key sequence, use the s cr - equivalents. They map
the extended key sequences into char values between Ox80 and OxFF. See the fies
CONFlG.C and PCIO.A for the mapping.

FILE - DIRECTORY
char *oldFile,int stat;int rename () ,

*newFile;

unlink () ;

stat = rename (oldFile,
stat = unlink (oldFile) ;

newFile) ;

rename changes the fie name oldFile to newFile. Under DOS 2.x and higher
oldFile may contain a path specification. Returns - 1 if oldFile is open, or if an
error is detected.

unlink deletes the fie oldFile. Under DOS 2.x and higher oldFile may contain a
path specification. Returns - 1 if oldFile doesn t exist, is open, or if an error is
detected.

FILE I/O
unsigned num, nitems,
char *buf;int fp, stat, mode;
int freadO, readO,

fflush ()
long offset, IvaI;
long fseek (), Iseek () ,

count;

fwrite () write 0,

rewind () ;

num = fread(ip, sizeof (*ip), nitems,
num = read (fp, buf, count);
num = fwrite (ip, sizeof (*ip), nitems,
num = write (fp, buf, count);
stat = fflush (fp)
IvaI = fseek (fp, offset, mode)
IvaI = Iseek (fp, offset, mode)
IvaI = rewind (fp) ;

fp) ;

fp) ;

fread reads into an area starting at ip, nitems of data of type *ip, from the fiefp ;
It returns num the number of items actually read, or 0 if an error occurred.

read reads count bytes into buf from the fie fp. It returns num the number of
bytes actually read, or - 1 if an error occurred.

!write appends from an area staring at ip, at most nitems of data of type *ip, to the
fie fp; It returns num , the number of items actually written.

write appends from buf, at most count bytes of data to the fie fp. It returns num,
the number of bytes actually written, or -1 if an error occurred.

ffush writes any buffered data for the fie fp to that fie. The fie remains open. It
returns -1 if fp is not open, or if an error occurred writing the buffered data to
that file.

fseek and lseek set the location of the next input or output operation on the fie

to the signed offset bytes from the beginning, the current location, or the end of the
fie accordingly as mode has the value 0, I, or 2. Both functions return the current
location, or - 1 if there was an error.

rewind is the same as f seek (fp, a L, a) it seeks to the begining of the fie fp .

SEE ALSO: fgetc (), fputc (), fgets (), fputs (), scanf (), printf

NOTE: #define ftell (fp) fseek (fp, aL,

Only disk fies are buffered, so ffush does nothing on non-disk fies.

FILE - OPEN/CLOSE
int fp, stat;
char *name, *method, mode;int creat (), fopen (), open (), fclose () , close () ;

fp =
fp =
fp =
stat
stat

creat (name)
fopen (name, method)
open (name, mode)

fclose (fp) ;
close (fp) ;

creat creates the fie name and returns an int that is used to reference it in future
fie operations, or -1 if the fie can t be opened. If the fie name already exists, it is
deleted.

fopen and open open the fie name and return an int that identifies the fie in
future fie operations.

fopen returns zero, and open returns - 1 if the fie can t be
opened.

method is a char string having one of the following values: " " = open for
reading, " = open for writing, " " = open for append open for writing at end of
fie , or create for writing.

mode is a char having one of the following values: 0 = open for reading, I = open
for writing, 2 = open for update, and 3 = open for reading (CTRLZ indicates EOF).

fclose and close write any buffered data for the fie fp to that file, and close the
file. They return -1 if fp is not open, or if an error occurred writing the buffered
data to that file.

NOTES: creat opens a fie in update mode so that after a file is written, a program
can seek to the begining of the fie and read it without closing the fie and reopening
it.

fopen for read access is the same as open for update; write access is the same as
creat for the fie; append causes a seek to the end of an existing fie, or the creation
of a new file as required.

Any of the functions can open the console (" CON") or printer (" PRN"

FORMATTED INPUT
char fcs

(),

int fp, num;int scanf () ,

buf () ;

fscanf () , sscanf () ;

num =
num =
num =

scanf (fcs (, ptr

) ;

fscanf (fp, fcs (, ptr
sscanf (buf, fcs (, ptr

) ;) ;

scanf reads from the stdin ,fscanf reads from the fie fp , and sscanf reads from
the string buf. Each function returns the number of items successfully scanned or
1 on end of input or error (fscanf). The format control string, fcs contains:

blanks or tabs , which match optional whitespace (blanks, tabs, newlines
formfeeds , and vertical tabs) in the input; a non- %' character which must match
the next character in the input, and conversion control strings which describe the
type and format of each ptr. Conversion control strings have the following format
((enclose optional entres):

% (*)

(width) (parms J code
where: * indicates that the field should be skipped and not assigned to a ptr width
specifies the maximum field size in bytes. Both parms and code are described

below. The examples have the following form:
I input string function call result

Character: % (* J (width) c
String: % (* J (width) s

width specifies the number of characters to be read into the array at ptr. The
default is 1. ' ' whitespace is not skipped

, '

' whitespace ,l.
abc I scanf (" %3c , buf) I a
abcl scanf(" %3s , buf) label

Integer: % (*) (width) (size) code

size equal to '1 (lowercase ') specifies that ptr point to a long, an 'h' specifies a
short int.
code is one of: 'd' signed decimal format

, '

unsigned decimal format

, '

unsigned octal, and ' unsigned hexadecimal.
FF scanf(" , &hex)

I 377 scanf (" , &oct)

I 255 scanf(" , &uns)

255 scanf (" %ld" , &lng)

255
255
255

-255L

FORMATTED INPUT

Floating Point:

% (*)

(width) (size) code

size equal to 'I (lowercase ') specifies that ptr points to a double rather than a
float.

code can be either '

, '

, or ' they all indicate floating point.
I 123. 45 I -7 scanf(" %f" , %flt) -7 123.
I 123. 45 I -7 scanf (" %4lf%d" , &d, &1) -7 123.

Scanset: % (*) (width) scanset

scanset is specified by a, sequence of characters enclosed by brackets T T. It reads
a string, including the terminating null character. Leading whitespace
skipped.

1123 ABC I -7 scanf("%(123 J" , str) -7 1123

A range of contiguous characters can be specified by the first and last element of the
range, separated by a '

1123 ABC I -7 scanf("%(1-3 J" , str) -7 1123

If the first element of scanset is a 'A', then all characters except those specified wil
be read.

1123 ABC I -7 scanf("

%("

A-CJ" , str) -7 1123 I

To specify ' or T in a scanset , specify it as the first element. Thus to read an
integer, skip any interviening garbage, and read another integer

scanf(" %d%*(" -+O-9)%d" , &dig1, &dig2);

FORMA TTED O'UTPUT
char fcs(), *cp,int status, fp;
void printf

() ,

int fprintf

() ;

bu f () ;

sprintf

() ;

printf (fcs (, arg

) .,.

status = fprintf (fp, fcs,
sprintf (buf, fcs (, arg

(,

arg

..,); ...);

printf formats the output to the fie stdout. fprintf formats the output to the fie fp,
which must have been opened prior to the fprintf call fprintf returns -Ion
error. sprintf formats the output in the character array buf, terminated with the
character I \ 0 I

The format control string, fcs contains both ordinar characters which are copied
unchanged to the output, and conversion control strings which describe how each
arg is to be formatted. Conversion control strings have the following format ((J
enclose optional entries):

% (-)

(width) (parms) code

where the optional' ' specifies that the field is to be left justified the default is
right justification.

The optional width specifies the minimum field width in bytes. A '*' means that the
width is specified by the next int arg in the callng sequence. A leading zero
indicates that the field should be padded with zeroes instead of blanks. The field is
not trncated if the width is too small.

Both parms and code depend upon the specific control strng, as follows.

Character:

% (-)

(width) c

printf(" %c"

, "

printf(" %3c

, "

printf (" , -3, "

IAI

IA
String: % (width)

(.

precision) s

precision specifies the maximum size of the string. An '*' means that the size is
specified by the next int arg in the callng sequence. If the string is longer than
the precision then the strng is trncated.

prlntf(" %5s

, "

abcdefgh"
: printf(" %-5. 3s, " abcdefgh"
printf("%5. 3s, " abcdefgh"

abcdefgh
labc

abcl

-..

FORMATTED OUTPUT
Signed Integer: % (-) (sign) (width) (1) d

A leading minus sign ' ' is automatically output for negative numbers. If the
optional sign is a I + I , a leading plus sign is output for positive numbers; a space

outputs a blan for positive numbers.

The optionall (lowercase ') specifies that the corresponding arg is a long.
printf(" %d" , -45) 1-451
printf (" %+d" , 45) +451

printf (" % ld" , 45L) I 451

printf(" %O*d" , 3, 45) 10451

Unsigned Integer: % (-) (#) (width) (1) code

specifies that a leading '0' is output for octal numbers , and a leading ' ' is output
for hexadecimal numbers.

code is ' ' for decimal format

, '

' for octal format, and ' ' for hexadecimal format.
printf(" , 255) 12551
printf (" , 255) 13771
printf(" %#x , 255) OxFF I

Floating Point: % (-) (sign) (#)

(.

precis ion) code

specifies that trailing zeroes are to be output, and that a decimal point is output,
even for zero precision.

precision specifies the number of digits output after the decimal point for code

and ' , or the number of significant digits for code . An '*' means that the
number of digits is specified by the next int arg in the callng sequence.

Truncation causes rounding. The default for precision is 6.

code is ' ' for)d. ddddd E(-)dd format

, '

f for (-)ddd. ddd format, and ' ' for the
shorter of ' ' or 'f' formats.

printf (" %f" , 1234. 56789)
printf(" lf" , 1234. 56789)
printf(" , 1234. 56789)
printf(" , 1234. 56789)

11234. 5678901
11234.
11. 235E031
11234. 571

Literal %:

% %

printf (" %5. 2f%%" 99. 44) 199. 44%1

NOTE: The maximum printf andfprintf output is 256 bytes. If you need more
use sprintf followed by puts ()

GLOBAL GOTO
#include ..setjmp. h

int val;
jmp buf env;int setjmp () ;
void longjmp () ;

val = setjmp (env) ;
longjmp (env, val);

jmp buf is defined in .: setjmp. h:; . It creates an environment used by setjmp for
future use by longjmp jmp_bufis defined as

typedef char jmp buf(6J;

setjmp saves the current SP, BP, and return address in env. It returns a zero.

longjmp restores SP, BP, and return address from env and returns val. val cannot
be zero.

NOTE: env can be specified as zero for compatibilty with previous releases.
There can be only one "zero env active at any time.

If the environment stored in env points into an overlay area, then the overlay that
called setjmp must be resident when longjmp is called if another overlay is
resident, then strange things wil happen. It is best to call setjmp from the root.

setjmp s caller can tell by the returned value if control was returned from setjmp
(0), or from longjmp (!=O).

MATH-COMPONENTS
#include -Cmath.

double dval, value, *ipart;int exp, *eptr;
double frexp (), ldexp (), modf () ;

dval = frexp (value,
dval = ldexp (value,
dval = modf (value,

ept r) ;
exp) ;

ipart)

frexp returns the mantissa of value as a fraction (-c' 1.0), and the base 2 exponent of
value as an integer at eptr

ldexp returns the quantity value

modf returns the positive fractional part of value and stores the integer part at
* ipart .

#include

double
double
unsigned
unsigned

MATH-LIMITS
math.

dval,
fabs (), floor ()
uval,
ab s () ;

ceil ()

dval = fabs (x) ;
uval = abs (y) ;
dval = floor (x) ;
dval = ceil (x) ;

fabs returns I I (absolute value).

abs returns I y I (absolute value).

floor returns the largest integer value not greater than x.

ceil returns the smallest integer value not less than x.

MA TH-TRANSCENDENT ALS

#include math.

double
double

x,

y,

dval;
exp (), expl0 () ,
sqrt () ;

log () , 10g10 () , pow () ,

dval = exp (x) ;
dval = expl0 (x) ;
dval = log (x) ;
dval = 10g10 (x) ;
dval = pow (x, y);
dval = sqrt (x) ;

exp returns the exponential function of x; explO returns the base 10 exponent.

log returns the natural logarith of x; loglO returns the base 10 logarithm.

pow returns

sqrt returns the square root of x.

NOTE: EDOM indicates an invalid argument, i.e., sqrt(- 0). ERAGE indicates
that the result would under/overfow, i.e., tan(PI/2.0). EDOM and ERANGE are
defined in math.

exp and pow return a very large value when the result would overfow; errno is set
to ERAGE. pow returns zero and sets errno to EDOM when the second argument
is negative and not integral, or when both arguments are zero.

log and loglO return zero when x is zero or negative; errno is set to ED OM.

sqrt returns zero when x is negative; errno is set to EDOM.

MATH-TRIG
#include --math . h::

double
double

x,
sin (), cos (), tan () ,
asin (), acos 0, atan ()

Y = sin (x)

Y = cos (x) ;
Y = tan (x)

y =

asin (x) ;

y =

acos (x)

y =

atan (x)

sin , cos , and tan are trigonometric functions of radian argument x. The
meaningfulness of the result depends upon the magnitude of the argument.

asin returns arc sin in the range -1t/2 to 1t/2.

acos returns the arc cosine in the range 0 to 1t.

atan returns the arc tangent in the range of -1t/2 to 1t/2.

NOTE: EDOM indicates an invalid argument, i.e., sqrt(- 1.0). ERAGE indicates
that the result would under/overfow, i.e., tan(PI/2.0). EDOM and ERANGE are
defined in math.

as in and acos return 0. 0 and set errno to EDaM for ;: 1.0. tan returns a huge
number and sets errno to ERANGE at its singular points.

MEMORY ALLOCATION
char *cp, *np, *op;
unsigned seg, num size, stack;
void freeall

(), _

setsp () ;
char * _memory

(), _

showsp (), *malloc () ,
*realloc ()

unsigned * showcs (), * showds ();

calloc ()

freeall (stack)
cp = _memory () ;
cp = _showsp () ;
np = malloc (size) ;
np = calloc (num, size);
np = realloc (op, size);
cp = free (op) ;
seg = _showcs () ;
seg = _showds () ;
setsp (stack) ;

freeall initializes the memory allocation area between the address returned by
memory, to stack bytes below the contents of the stack pointer showsp.

malloc returns a pointer to a block of size bytes, or 0 if it couldn t allocate the
memory. Iffreeall hadn t been called, the first call to malloc wil call it to set up the
memory allocation area and reserve 1024 bytes of stack space.

""'

calloc returns a pointer to a block of num size bytes, or 0 if it couldn t allocate the
memory. Iffreeall hadn t been called, the first call to calloc wil call it to set up the
memory allocation area and reserve 1024 bytes of stack space.

realloc changes the size of the block at op to size bytes and returns a pointer to the
(possibly moved) block, or 0 if it couldn t allocate the memory. If realloc returns 0,
the original block at op is stil allocated and useable.

free marks the block at cp as unallocated.

showcs returns the paragraph address of the code segment (the CS register).

showds returns the paragraph address of both the data and stack segment (the DS
and SS registers).

setsp sets the stack pointer (the SP register) to stack.

MEMORY ALLOCATION

NOTE: The memory allocation area is divided into blocks with the following
format:

struct t
char status;
unsigned size;
char data(l);

status is one of: allocated (OxAB), unallocated(Ox 9D), or end-of-area marker
(OxC6). size is the size of data in bytes. The address of data is retued by malloe
ealloc and realloe and used by free.

free marks a block as unallocated. malloc searches the allocation area in order
from bottom to top. Thus in the following fragment

fp = malloc (size) ;
free (fp) ;
np = malloc (size) ;

fp may not equal np .

freeall sets up the area with two blocks an unallocated block at memory of a
size determined by the current value of SP and the amount of stack passed to freeall
and the end-of-area block of size zero.

The following function prints out a map of the memory allocation area.

char *cp;

cp = _memory () ;
while (cp-;:status != OxC6)

printf (" %5u %2salloc bytes at
cp-;:size,
cp-;:status == OxAB ?

""

cp) ;
cp = cp-;:data + cp-;:size;

%u \n

" ," ,

os -- OVERLAY
int overlayNumber, status

char *overlayFilenamei

status
status
status

overlay init (overlayFilename)

overlay (overlayNumber)
moverlay (overlayNumber)

overlay init must be called prior to the first overlay call and must not be used when
the - option of BIND is used. overlayFilename contains the overlays. On
MS-DOS 2.0 and later, the overlay fie c n be in the default directory of any

directory listed in the PATH system parameter. Othexwise the fie must be on the
default drive or must explicitly contain the driver number, e.

g. "

B:X.OV"

. -

1 is
returned if the fie could not be found.

overlay loads overlay overlayNumber as created by the BIND command with the
V option. It must be called before any reference or call to data or code in the

overlay. Overlays are not automatically loaded by referencing a value in the
overlay. -1 wil be returned if the overlay _init routine has not been called
successfully, if the .OV fie is bad, or if overlayNumber does not correspond to an
existing overlay.

moverlay loads the indicated overlays created by the -M option in the BIND
command. It works the same as the overlay function described above.

NOTE: When an overlay call is made, the functions in the previous overlays can no
longer be called and the data associated with the last overlay is lost. If an
uninitialized variable is referenced by both a module in the root and a mode in an
overlay, it is placed in the root. If a data item is initialized in a root module , it is

also placed in the root. If it is initialized in an overlay, it is placed in the overlay.

os - SYSTEM INTERFACE
char *buf, inum,
unsigned arg;

i val;

extern unsigned _rax, _rbx,

' _

rcx,
res, _rds;

extern char _carrf, _zerof;
unsigned _os () ;
void _doint (), dates (), times () ;

- rdx, rsi, - rdi ,

ival = _os (inum,
doint (inum)

dates (buf) ;
times (buf) ;

arg) ;

rax rds contain the values of the corresponding SOS8 internal registers that are
loadedand saved by doint. _carrfis the carr flag; zerofis the zero flag

os provides an elementar interface to the BIOS. On DOS, inum goes into AH
and arg into DX, and an int 21H, is executed. On CP/M- , inum goes into CL
and arg into DX, and an int 224 is executed. The value in AL is returned.

- doint wil cause a software interrpt and may be used to call whatever routines are
available in the particular machine. If rds is set to - , the current value of the DS
register is used.

dates formats the string buf with the current date as "mm/ dd/ yy

" .

times formats the string buf with the current time as "hh-mm-

NOTE: The following example, on an IBM-PC, would use interrupt 10H to print
the string.

extern unsigned _rax, _rbx, _rds;
extern char _carryf;
char str (J = " Hello There!!"int i;
for (i = 0; i sizeof (str); i++) \

rax = (14 8) + str (iJ;
rbx = 0;
rds = -1;

- doint (OxlO) ;

os TASK CONTROL
char *filename, *commandTail, Code;

Code = exec (filename, commandTail)
chain (filename, commandTail)
exit (Code)

exec wil load and execute an arbitrary program filename is the complete
pathname of the program (including the .EXE or .COM suffix). commandTail
contains the arguments to the program. exec wil return the completion code from
the program or - 1 if an error occurred loading the program. exec is in the

EXEC.O fie provided on the distribution disks.

chain functions like exec except that control is not returned to the callng program.
chain is in EXEC.O, on the distribution disk. It should be bound in first to save
memory since it loads the called program immediately behind itself. For example:

BIND EXEC BLIP -OBLIP

exit terminates the program with completion code Code. A main () procedure can
also exit with a completion code of zero by returning or by " fallng" through the
end of the procedure. exit does not close open fies.

NOTE: Completion codes are set for programs running ,under MS-DOS 2.0 or
later versions of the operating system. If a program exits with

exit (n)

the system ERRORLEVEL wil be set to n. A program that returns from the main
function other than by exit () sets ERRORLEVEL to zero. ERRORLEVEL can
be tested with the DOS batch fie IF command. See the section under ' BATCH' in
the IBM 2.xx DOS manual for details on the IF command.

To invoke a Batch file, or a DOS built-in command, use COMMAND.COM with the
switch as follows:

exec (" \ \command. com /cxxx
where xx is one of the DOS built- in commands ('dir

, '

copy

, ...

) or the name of a
batch fie, including the trailng .BAT. Remember that two backslashes are
required to insert a single backslash in a string. Invoking COMMAND. COM with
no parameters wil star another DOS shell (like F9 in SEE). To return, type

exit

CBB normally allocates a stack as large as possible. This is not desirable when using
exec, as little memory may be left for the second program. The -Shhhh option of
the BIND program should be used to reduce the size of the stack and consequently
the size of the progra. Remember that the hh value of the option is in bM and
that it must be large enough for all parameters and locals active at one time. An
extra OxlOO (256) bytes should also be added for any system calls.

RANDOM NUMBERS

int seed, i val;
double dval;int rand();
double frand

() ;

void srand () ;

ival = rand();
dval = frand () ;
srand (seed) ;

rand returns the next pseudo-random number in the range from 0 to 2 - 1.

frand returns the next pseudo-random number in the range from 0.0 to 1.

srand sets the seed for the multiplicative congruential random number generator to
seed.

NOTE: The initial seed for the generator is a long. srand only sets the low order
word, so the generator cannot be restarted. Solution: seed the generator with your
own integer before any calls to rand orfrand.

SORT
char array r) ;int num, width,
void qsort () ;

(*compare) () ;

qsort (array, num, width, compare) ;

qsort is an implementation of C. A. R. Hoare quicker-sort algorith. It sorts an
array of num elements, each width bytes wide. compare is called with two
arguments (pointers to the two elements being compared), and returns an integer
less than, equal to , or greater than zero accordingly as the first argument is less
than, equal to, or greater than the second argument.

NOTE: The usual function for compare is strcmp (). If you are sorting
anything other than strngs, the following may serve as a model:

int compare (left, right)
int *left, * right;

return * left - * right;

#define TCARD
#define ISIZE

1024
, sizeof (int)

:-,

int itab (TCARD)

qsort (itab, TCARD, ISIZE, compare);

Remember that int, long, float, and double values are stored with their
low-order bytes first. Thus string comparisons may not produce the expected
results.

STRING CONVERSION
ohar *op;int ivaI, atoi

() ;

double dval, atof () ;
long IvaI, atol ()

ivaI = atoi (op)
dval = atof (op)
IvaI = atol (op)

These functions convert the char array at cp to int, double, and long values
respectively. The first unrecognized character terminates the conversion. There is
.! test for overfow.

whitespace is either a tab or a space. A digit is an ASCII character '0' through '
is either an ASCII 'E' or ' . () delimit sequences that can occur zero or one time.
delimit sequences that can occur zero or many times.

Function Valid character Seq,uences

atoi ()
atof ()
atol ()

.fwhitespace Hsign Hdigit)-
iwhitespace Hsign Hdigit H' .')(-digit HE (signHdigit

.fwhitespace Hsign Hdigit)-

SEE ALSO:scanf ()

NOTES:To guard against int overfow, or large uns igned values being stored
as negative integers, use atol and check that the high-order word is the same as the
high-order bit of the low-order word.

#include math.

atoi (str)
char *str;

long val, atol

() ;

unsigned sign, extn;
extern int errno;

extn = (val = atol (str)) ?? 16;
sign = val & Ox8000;
if ((! sign && extn != 0) II (sign && extn != -1))

rerrno (errno = ERAGE);
return val;

STRING I/O

char *cp, buf rJ ;int err, len, fp;
char *gets (), *fgets ();
int _gets (), puts (), fputs

cp gets (buf) ;
len = _gets (buf,cp fgets (buf,
err = puts (buf) ;err = fputs (buf,

sizeof (buf)

) ;

len, fp);
fp) ;

gets obtains a line-edited string from the console (stdin) into buf. During input,
-cESC;: means backup and start over, -cBACKSPACE;: means delete the previous
character and -cRETURN;: means end of string. -cRETURN;: is replaced in buf

a zero. gets returns its argument, or 0 on end of fie or an error.

gets obtains not more than s'izeof (buf) - 1 characters from the console into
buf. Editing proceeds as with gets. _gets returns the number of characters
obtained, or 0 on end of fie or an error.

fgets reads the next line, but not more than len - 1 charcters from the fie fp into
buf. The last character read into buf is followed by a zero. fgets returns buJ, or 0
on end of fie or an error.

puts copies the null terminated strng buf to the console (stdout). puts returns a-
on error.

fputs copies the null terminated string buf to the fie fp. fputs returns a - 1 on
error.

SEE ALSO: fscanf (), fread (), fprintf (), fwrite

NOTE: gets and gets don t return the CR character,fgets does.

puts doesn t append a newline.

On output, linefeed ('\ n ') is converted to carriage return - linefeed ('\ r \ n '
Output wil stop if CTRL-S is entered, and resume when any other key is pressed.
Each output wil check for a CTRL-C entry, and terminate the program if it was
pressed.

STRING - OPERATIONS
char *cp, *src, *dst, *sl, *s2, Chi
int max, len, cmp;
char * strcat (), * strncat ()

*strcpy (), *strncpy () ,*index(), *rindex() ;
int strcmp (), strncmp

() ,

str1en () ;

cp = strcat (dst, src);
cp = strncat (dst, src,
cp = strcpy (dst, src);
cp = strncpy(dst, src,
cp = index (src, ch);
cp = rindex (src, ch);
cmp = strcmp (sl, s2);
cmp = strncmp (sl, s2,
1en = str1en (src) ;

max) ;

1en) ;

max) ;

All functions work on null-terminated strings. There is no test for overfow.

strcat appends a copy of src to the end of dst. strncat appends, at most ma bytes.
Both functions return dst .

strcpy copies src to dst , stopping after the null byte has been transfered. strncpy
copies exactly len bytes, truncating or null-padding as required; dst may not be
null-terminated if the strlen (src) ::= len.

index returns a pointer to the first occurrence of ch in src , or 0 if ch doesn
occur. rindex returns a pointer to the last occurrence, or

strcmp compares the two strings and returns +1, 0, or - 1 accordingly as sl

lexically greater than, equal to , or less than s2 strncmp makes the same
comparison, but of, at most max bytes.

strlen returns the number of non-null characters in src .

DeSmet C Development Package, V2.

Appendix A: Messages

1 SEE Messages

1 Banner and Termination Messages

When the SEE editor reads in a fie to edit, the menu line is replaced by the banner
message:

SEE (TM): Screen Editor V2. 4: Copyright 1982, 83, 84, Michael Ouye

When the editor is exited, the message line prints the message:

bye! -(filename;;

2 Error and Status Messages

As commands are executed, the editor wil display a number of status messages on
the message line:

characters This message is displayed whenever a fie is edited and when
the Quit command is invoked. It shows the number of characters contained by
the fie.

bad command This message is printed when there is no command that
corresponds with the character typed.

bad tag name This message is displayed when a letter besides A , or D was
typed for a tag name.

can t find " ..string:: This message is displayed when a request to find the
string fails.

can t write to fie ..fiename:: try again? (y/n) - An error occurred while
attempting to write the fie out to t4e disk. Type 'Y' to try to write the fie to
the same filename. Type ' N' to abort the attempt and use the Quit- Write
command to write the buffer out to a different file.

Page A.1

DeSinet C Development Package, V2.

hit a key to continue This message is displayed during the List command to
indicate that the next screenfull of text should be displayed.

ignore the changes? (y/n) This message is printed when the memory buffer
has been modified and not saved to disk and the buffer is about to be
reinitialized with the Quit-Initialize command or the editor is about to be
exited with the Quit-Exit command. Type 'Y to continue the command, or 'N'

to abort the command.

no input fie This message' is printed when the Update or BAKup commands
are executed but no fie was specified on the command line. Use the

Quit-Write command to write the buffer out to the disk.

reading fie: c:fiename::

...

This message appears whenever a fie is read
into memory. The completion status of the read operation is appended to the
end of the message. If everything goes well, the word "completed" wil be
appended to the end of the message. Othexwise, the editor wil append the
string "can t read fie" if an error occurred while attempting to read the fie.

recording Macro F#, use Macro key to finish recording This message

is continually displayed as long as a Macro is being recorded. To end the
Macro and the message, reinvoke the Macro command by typing the letter '

2 C88 Compiler Messages

1 Banner and Termination Messages

?C88 Compiler
end of C68

V2. (c) Mark DeSmet, 1982, 83, 84,
001A code 0012 data 1% utilization

?C88 Compiler V2. 5
(various error messages)

(c) Mark DeSmet, 1982, 83, 84, 85

Number of Warnings = 2 Number of Errors = 5

The first form of termination means the compile was successful. The ' code' number
is in hex and tells how many bytes of code were produced. The 'data' number is
similar and tells how many bytes of data were produced. ".e utilzation percentage
is the worst case of a number of compiler limits. If it nears 1 00% it usually means
that the largest procedure should be broken into smaller procedures.

Page A.

DeSmet C Development Package, V2.5

The second form means the compile failed. Error messages are explained in the
following section. If any errors were detected, the compiler wil stop trying to
generate code and wil stop as soon as all the source has been read. This ' syntax
check' mode is fast and allows the programmer to correct the program with a
minimum of delay. If only warnings are detected, but no errors, compilation wil
end normally and produce a .0 fie.

2 Messages

C88 produces four categories of messages: fatal errors, errors, warnings and errors
detected by the assembler. Fatal errors are usually caused by 110 errors but
compiler errors are also in this category. When a fatal error is detected, the
compiler wil print a message and quit. Errors are caused by syntax errors. C88
reports all such errors and then quits. Warnings are produced by correctable errors
and the compiler continues. Since the compiler uses ASM88 as pass 3, assembler
detected errors are possible but rare. When they occur, the object module wil not
be usable.

It is easy to tell the category of an error. After a fatal error, the compiler stops
without printing a termination message. Errors and warnings have a distinctive
format which includes the word 'error' or 'warning . Assembler errors print the

assembler line that was found offensive.

1 C88 Fatal Errors

The pass 2 fatal errors like 'bad expression' are compiler errors, but the error is
usually caused by missing the problem in pass 1 and printing a reasonable message.
If you get one of these errors, please send your program to C Ware, but you can
probably find and eliminate the statement that caused the problem. Don t be
frightened by seeing these errors listed; you wil probably never see any of them.

bad expression ths indicates a compiler error. Printed by pass

bad GOTO target attempt to goto something other than a label.

break/case/continue/default not in switch - a case or default statement must
be within a switch. A break statement must be in a while, do...while, for, or
switch. A continue statement must be in a while, do..while, or for statement.

Page A.3

DeSmet C Development Package, V2.5

cannot address ilegal use of '&' operator. Printed in pass 2.

cannot close oefie;: the fie could not be closed. An I/O error occurred.

cannot create oefie;: the named fie could not be created. The name is a
temporary name or the name of the object or assembler fie. This message
usually means the drive is full (see ' T' option).

cannot open oefie;: the named source or include fie could not be found.

cannot readoefie;: the named fie could not be read. Usually means an I/O
error was detected.

cannot unlink oefie;: .. the temporary could not be deleted. An I/O error
occurred.

cannot write oefie;: the named fie could not be written. An I/O error was
detected. Usually means the disk drve is out of space.

error in register allocation compiler error in pass 2.

divide by zero - a constant expression evaluated to a divide by zero. Should
never happen. .

function too big - a function is too big for the compiler. The 'Utilzation
number reflects this limit so there is normally plenty of waring. The solution
is to break large procedures into smaller ones.

ilegal initialization for oename;: only constant expressions and addresses

plus or minus constant expressions can be used in initialization and the
initialization must make sense. For example

int a=b+2;

this error is fatal because it is not discovered until pass 2.

no cases - a switch must have at least one case.

no input fie -C88 must be followed by the name of the source fie when
invoked.

out of memory the compiler ran out of symbol space. The 'utilzation
numbers war when a program is about to exceed this or any other compiler
limit. The compiler can use up to lOOK, so adding memory may be a solution.

Page A.4

DeSmet C Development Package, V2.

If not, the only remedy is the painful surgery required to reduce the total
number of externals and locals defined at one time.

pushed compiler error in pass 2 code generation. It can be eliminated
simplifying the expression.

too many cases currently, a switch statement can only contain 128 case
statements.

too many fors/too many whiles whiles, do-whiles, switches and for

statements can only be nested 10 deep.

stuck -=register:: same as 'pushed'

too many externals the compiler currently has a limit of 500 static's or
extern

2 C88 Errors

Errors are printed with the following format:

23 if (i 99 $$ t
error: Need ()

Or, if the error was detected in an include fie:

23 if (i 99 $$ t
file: include file error:Need ()

The number preceding the source line is the line number. To find the line, edit the
fie and issue the command 'nn' where nnn is the number of the reported line.

The '$$' shows how far into the line the compiler was before the error was detected
For example, the '$$' wil print immediately BEFORE an undefined variable.

If you get a lot of errors on a compile don t panic . A trivial error probably caused
the compiler to become confused. Correct the first few errors and re-compile.

bad control the # control is ilegal.

bad declaration the declaration of a variable was ilegal.

Page A.5

DeSmet C Development Package, V2.5

bad include the #include must be followed by "name" or -cname::.

bad label - a colon is not preceded by a label name.

bad member declare the declaration of a member is ilegal.

bad member storage an attempt was made to declare a member static or
external. Members have the storage type of their struct or union.

bad parameter declare an ilegal declaration of an argument or the name of
the argument was spelled differently in the procedure heading and in the
declaration.

bad statement ilegal statement.

defines too deep #define may reference another, but there is a limit. When
#defines are expanded, the number of active #defines plus the number of
#define arguments referenced by each cannot exceed 30.

duplicate argument - an attempt was made to declare an argument twice.

duplicate label two labels have the same name.

EOF within comment end of fie was found inside a comment. A '*/' is
missing.

field needs constant the size of a bit field must be a constant expression with a
value of I to 16.

ilegal address attempt to use the '&' (take address of) operator on something
that is not an lvalue. '&44' wil generate this error. An address can only be
taken ofa variable, procedure, string or label.

ilegal define - a #define has unmatched parentheses or the #define parameters
are ilegally specified.

ilegal external declaration caused both by an ilegal data or procedure

declaration and improperly nested braces. If the line is supposed to be part of
a procedure (e.g. i=O;), the latter is the case. Verify that every '1' outside of a
comment or quoted string has a matching T. Note: a prior error may have
caused the compiler to lose track of a '

ilegal indirection caused by trying to use a char, int, unsigned, float or

double as a pointer. longs can be used as pointers but the other types cannot.

Page A.

DeSmet C Development Package, V2.

include nesting too deep includes can only be nested three deep

ilegal use of float floating point numbers cannot be used as pointers.

indirect call there is an expression of the form x (. . .) and is not defined as
a function or a pointer to a function. To call a pointer to a function use

x) (. . .

line must be constant - a #line control must be followed by a decimal constant.

line too long the maximum line length is 128.

missing "

, " , " , " , " , " , " , " , "

I" the indicated nn character

is needed at this point. A multitude of errors can cause these messages. The
, error might be fixed by inserting the indicated character where the ' $$' prints,
but the item following the '$$' could be ilegal.

missing - a character constant (e.

g. '

,'TEXT') can only contain one to four
characters.

missing argument the argument list of a call had two adjacent commas.

missing arguments - a #define was defined with arguments but used without
arguments.

missing dimension an array dimension was missing in an expression or
statement. Either int x(HJ; or xU= 1;.

missing end of #asm - an #asm block was not ended with a #.

missing expression
an expression is needed here. An example of a missing expression is i=;.

missing operand - an operator without an operand was found. An example of a
missing operand is ++;

missing while - a 'do ... while ' is missing the ending 'while

must return float - a float or double function must end with a return statement
that returns a value. Note: The compiler is too stupid to accept.

double x()iif (1) return 1.

;/.

Page A. 7

DeSmet.c Development Package, V2.

need 0 the expression following an 'if or 'switch' or 'while ' was not
surrounded by parentheses.

need I f' for STRUCT initialization the initial values used to initialize a
structure must be surrounded by braces.

need constant a 'case ' prefix must be followed by an integer constant
expression.

need constant after #if a #if control must be followed by a constant
expression.

need label - a goto must reference a label.

need Ivai - an lvalue is needed here. An Ivalue is, roughly, something that can be
changed with an assignment. The statement: 2=4; wil produce this error.

need member the ' .' or '

-:;

' operators were followed by something other than a
member name.

need structure the name prior to a ' .' operator is not the name of a structor
UnIon.

not an identifer - #ifdef, #ifndef and #undef controls must reference a #define
value;.

not defined #undef controls must reference a #define value;.

only STATIC and EXTERN allowed at this level an attempt was made to
declare an 'auto ' outside of a procedure.

parameters cannot span' lines the' arguments to a #define must all be on the
same line.

return lacks argument if a function is declared as returning a value then
return;" is ilegal. Use "return 0;" if the value is unimportant.

sorry, must have dimension for locals - the compiler does not accept char
a()=-(1 , 3 J; and similar for auto variables. Declare the variable static or
include an explicit dimension.

Page A.8

DeSmet C Development Package, V2.

sorry, no string initialization of AUTO the compiler cannot accept char

a()= abc ; and similar for auto variables. Declare the variable static if
possible, otherwise use _move.

string too long - a string canot exceed 200 characters. Usually means that a ""
is missing.

undefined structure - a pointer to an undefined strcture cannot be added to.

unknown control the word following a '#' is not a control word. ' #while
would cause this error.

unmatched" either the end of line or end of fie was found in a string. Ths
usually means that a " is missing. If your string is too long for one line,
continue with a \ (backs lash) at the end of a line and continue in column one of
the next. If you want a new line in a strg, use \no

wrong number of arguments - a #define was used with the wrong number of
arguments.

3 C88 Warings

Warings indicate a change in syntax (as in the case of strctures), or suspicious
code that is probably OK.

conflcting types an external or static was declared twice with different types.
Usually caused by an include fie declaring a variable incorrectly or by a
progra such as:

main ()

char ch;

ch=zipit ()

char zipit (ch)'
char ch;

return ch;

the call of zipit implicitly declares it to be a function returning an integer.
The line 'char zipit(ch)' would be flagged as an error. The fix is to include:

char zipit

() ;

above the call so the function is declared correctly before use.

Page A.

DeSmet C Development Package, V2.

member not in structure the member identified by strct.member or by
ptr-;:member is not a member of the specified structure. A (char *
pointer wil select any member.

returns structure the current function has been declared as returning a
strcture. This is to warn you that the entire structure, and not a pointer to it;
is being returned.

structure assignment the strcture named as a parameter wil be pushed on
the stack rather than a pointer to the structure, as was the case in previous
releases.

undefined variable the variable has not been defined. It is assumed to be an
auto int.

2.4 ASM88 Errors (from C88 Execution)

In theory, any ASM88 error message can be produced by ,a C88compile gone
bonkers but I have only seen the ' cannot write .:name;: ' errors caused by lack of
disk space.

3 ASM88 Assembler Messages

A.3. 1 Banner and Termination Messages

ASM88 8088 Assembler V1. (c) Mark DeSmet, 1982, 83, 64, 85

(various error messages)

end of ASM88 0016 code 0000 data 1% utilization

The 'code ' number is in hex and tells how many bytes of code were produced. The
data ' number is similar and tells how many bytes of data were produced. The
utilzation percentage shows how full the symbol table was.

Page A.10

DeSmet C Development Package, V2.5

Sample of list output:

ASM88 Assembler BLIP.
1 ;TOUPPER.A convert a charcter to upper case

3 CSEG
4 PUBLIC TOUPPER

6 ; character = toupper(character)

15 TO DONE:16 -
0006 2C20
008 B400
ooA FF2

TOUPPER: POP
POP
CMP

CMP
JNC
SUB
MOY

AL,'a
TO DONE
AL";'
TO DONE
AL-;'

;RETU ADDRESS;CHCf
;IF LOWE TIAN '
;DO NOTHG
;OR IF ABOVE '
;DO NOTHG
;EE ADJUST
;RETU AN !N
;RETU

()() 5

0001 58
00023C61

0004 3C7B

2 Messages Produced by ASM88

ASM88 prits two categories of messages: fatal errors and errors. As with C88, the
fatal errors are caused by 1/0 errors or similar. Errors are simply syntax errors in
using the language. When a fatal error is detected, ASM88 prints a message and
stops. An error does not stop the assembler, but it stops writing the object module
to run faster. If errors are detected, the object module is never good.

1 Fatal Errors From ASM88

cannot close -:fie:: the fie could not be closed. An I/O error occurred.

cannot create -:fie:: the named fie could not be created. The name is a
temporar name or the name of the object or list fie. This message usually
means the drive is full (see 'T' option).

cannot open -:fie:: the named source or include fie could not be found.

cannot read c:fie;: the named fie could not be read. Usually means an 1/0
error was detected.

Page A.ll

DeSmet C Development Package, V2.5

cannot unlink ocfie:: the temporary fie could not be deleted. An I/O error
occurred.

cannot write dile:: the named fie could not be written. An I/O error was
detected. Usually means the disk drive is out of spa.ce.

internal error in jump optimization the assembler became confused
optimizing branches.

no input fie - no fiename followed the ASM88 when invoked.

too many labels only 1000 names and labels are allowed.

too many symbols the assembler ran out of symbol space. The source
progra should be broken into smaller modules.

2 Errors from ASM88

Error messages have the form:

44 mov #44, a3
error: illegal mnemonic

or, if the error was found in an include fie:

44 mov #44,
file: 2: SCREEN. A error: illegal mnemonic

The messages are:

address must be in DSEG address constants can only be in DSEG because
constants in CSEG are not fixed up at run time.

bad DS value - a constant expression must follow the DS.

bad include the correct form for ai include statement is:
include " filename

bad LINE value the line statement should be followed by a constant.

PageA.

DeSmet C Development Package, V2.5

cannot label PUBLIC - a 'public' statement cannot have ' a label.

data offset must be an unsigned an attempt was made to use an offset in a
byte or long constant.

DS must have label storage cannot be reserved without a name.

DS must be in DSEG storage can only be reserved in DSEG.

duplicate label- the label on the line was defined previously.

equate too deep an 'equ ' may reference a prior one, but only to a depth of
four.

ilegal expression the expression had an ilegal operator or is somehow
invalid.

ilegal operand an operad had a type that was not legal in that context.

ilegal reserved word - a reserved word was found in the wrong context.

ilegal ST value the index to a floating point stack element must be in the
range 0 to 7.

incorrect type only 'byte

, '

word'

, '

dword' , and ' tbyte , are allowed following
the colon to type a public.

impossible arithmetic an arithmetic operation has operands incompatible
with the 8086 architecture.

example:

add word (bx), word(si)

in wrong segment - a variable or label is being defined in a segment other than
the segment of its 'public statement. Remember that 'public ' statements must
be in the correct segment, following ' dseg ' or 'cseg' as appropriate.

invalid BYTE constant - a byte constant was needed, but something else was
found.

invalid constant the instruction needed a constant and something else was
found.

Page A. 13

DeSmet C Development Package, V2.

invalid DD constant the value of a 'DD' must be a constant expression.

invalid DW constant the value of a 'DW' must be a constant expression or a
varable name. In the latter case, offset is assumed. The statement:

offset zip

is ilegal since offset is already implied. Just use:

zip

invalid offset - an offset of the expression cannot be taken.

line too long the maximum input line to ASM88 is 110 characters.

mismatched types the types of the two operands must agr

example:

add
add
add

chr
ax, bl
chr, ax
word chr, ax

illegal
illegal

; legal

misplaced reserved word - a reserved word was found in an expression.

missing: the '?' operator was missing the colon par.

missing) mismatched parentheses.

missing) mismatched braces in an address expression.

. .

missing ' labels to instructions must be followed by a colon. This message
also prints when a mnemonic is misspelled. The assembler thinks that the bad
mnemonic is a label without a colon.

missing EQU name - an equate statement lacks a name.

missing type the memory reference needs a type. In the case of 'public
defined elsewhere, the type can be supplied by ' :byte' or ' :word' on the public
statement. In the case of anonymous references, the 'byte ' or 'word' keywordmust be used.

Page A.14

DeSmet C Development Package, V2.

example:

publ ic
inc a
inc byte ainc es: (bx)inc es: word (bx)

a:byte
; illegal
; legal
; illegal
; legal

need constant something other than a constant expression followed a ret'.

need label - a jump relative was made to something other than a label. 'jmp
may be indirect but JZ s etc. can only jump to a label.

nested include an included fie may not include another.

not a label only names can be public.

RB must have label - an 'RB' statement must have a label.

RB must be in DS

- '

RB' s must follow a DSEG directive as they can only be in
the data segment. 'DB's can be in the code segment.

RW must be in DS as above.

too many arguments the instruction had more operands than allowed or the
last operand contains an ilegal op-code.

undefined variable c:name the name is referred to but not defined or listed
as public.

unknown mnemonic the mnemonic is ilegal.

AA BIND Messages

AA. Banner and Termination Messages
Binder for C88 and ASM88 Vl.end of BIND 9% utilization (c) Mark DeSmet, 1982, 83, 84,

PageA.15

DeSmet C Development Package, V2.

AA. Warnings from BIND

undefined PUBLIC - .:name;: the name is referenced, but not defined in any
module. BIND wil complete and the resulting .EXE module may execute as
long as the undefined PUBLICs are not referenced. If they are referenced
then the result is undefined.

AA. Fatal Errors from BIND

BIND prints the message, prints ' BIND abandoned' and quits.

bad argument an argument is ilegal.

bad object fie.:name;: the object or library fie contains an ilegal record.

bad stack option - the S' option should be followed by one to four hex digits.

cannot close .:fie;: I/O error occurred.

cannot create .:fie;: 1/0 error or disk out of room. On MS-DOS 2.0 and
later, make sure that the CONFIG.SYS file contains a FILES=20 command.

cannot open .:fie;: the object fie could not be found. On MS-DOS 2.0 and
later, make sure that the CONFIG.SYS fie contains a FILES=20 command.

cannot read .:fie;: I/O error occurred.

cannot seek .:fie;: 1/0 error occurred.

cannot write .:fie;: I/O error or disk out of room.

different segments for - .:name;: the public is , declared in different
segments in different modules probably both as a function and as a varable.

ilegal overlay number in the overlay options -Vnn and -Mnn, the value nn
must be between 1 and 39 in ascending consecutive order.

multiply defined .:name;: the same public appears in two modules.

over 100 arguments - BIND only allows 100 arguments, including arguments
in -F files.

Page A.

DeSmet C Development Package, V2.

over 64K code - a segment has over 64K of code. See the description of BIND
overlay support.

over 64K data the resultant program has over 64K of data. This is not
supported. You wil have to move some data to locals or use overlays.

over 300 modules only 300 modules can be linked together. The supplied
librar only contains about 60 modules.

too many fienames there are only 2000 bytes reserved for all fienames.

too many labels in c:name:: - a module in the named fie had over 1000 labels.

too many total PUBLICS in c:name:: symbol table has overflowed. The
named fie was being read when the overfow occurred.

5 LIB88 Messages

1 Banner and Termination Messages:

Librarian for C88
-TOUPPER
-ISDIGIT
-ISALPHA
ISALNUM
ISPUNCT
-TOLOWER
end of LIB88

and ASM88 V2. (c) Mark DeSmet 1982, 83, 84,

ISUPPER
ISASCII

ISLOWER
ISCNTRL

ISSPACE
ISPRINT

12% utilization

The list of code publics is only printed if the -P option is employed. A minus sign in
column one indicates the start of a new module.

2 Warnings from LIB88

warning: circular dependencies two modules reference each other; this is
OK if the first is always included whenever the second one is. The -N (need)
option wil kil this message.

Page A.

DeSmet C Development Package, V2.

A.5.3 Fatal Errors from LIB88

LIB88 prints the message, prints ' LIB88 abandoned' and quits.

bad argument c:argumenb the option is ilegal.

bad object fiec:name:: the object or library file contains an ilegal record.

cannot close dUe:: 110 error occurred.

cannot creat c:fie:: 110 error or disk out of room.

cannot open c:fie:: the object fie could not be found.

cannot read c:fie:: 110 error occurred.

cannot write dile:: 1/0 error or disk out of room.

no input fie - no list of fies followed LIB88 on the invocation line.

over 100 arguments LIB88 only allows 100 arguments, including arguments
in -F fies.

over 300 modules only 300 modules can be linked together. The supplied
librar only contains about 60 modules.

too many dependencies in c:name:: there is a total of over 1500
dependencies between modules.

too many total PUBLICS in c:name:: symbol table has overfowed. The
named fie was being read when the overfow occurreq.

6 D88 Messages

* Control C * - The user typed control-C or control-break. If control-Cis
typed while a user program is executing, the program canot be restaed.

cannot open c:fiename:: Cannot open the named fie for the List of

Quit-Initialize command.

Page A.

DeSmet C Development Package, V2.

cannot read c:fiename:: - The named fie could not be read. Probably an 1/0
error.

cannot repeat Again can only follow Again, Display, List or Unassemble
commands.

ilegal address - The & operator was applied to something not in memory, e.
&1.

ilegal assignment - An attempt to assign an expression to a constant was made.
Only memory references and register can be changed.

ilegal command - The command letter is not vaild.

ilegal operand This is a catch-all error; it just means that the expression
could not be parsed correctly.

ilegal value - The break numbers are 1 , 2, or 3.

invalid symbol The name is not in the symbol table. Probably a typo or
missing 0 before a hex constat.

line not found The line is unknown. Only executable lines have number
records. Other lines cannot be referenced by number. The fie may not have
been compiled with the -C option.

missing) missing)
character.

missing missing Unmatched bracketing

need a number - A line number contained something other than a digit.
expressions are allowed.

normal end - The program being debugged executed an exi t () call.

not in a C procedure - The Proc-step command can only be executed when the
debugger knows which procedure is being debugged. The Step command can
be used.

Page A.19

DeSmet C Development Package, V2.5

7 CLIST Messages

1 Banner and Termination

CLlST Vl.
end of CLlST

(c) Mark DeSmet, 1982, 83,

A. 7.2 Messages Produced by CLIST'

All messages indicate fatal errors. CLIST prints the message, prints ' CLIST
abandoned' and quits.

cannot close ..fie 110 error occurred.

cannot creat ..me 110 error or disk out of room.

cannot open ..fie the source fie could not be found.

cannot read ..fie 110 error occurred.

cannot write ..fie 110 error or disk out of room.

no input fie - no list of fies followed CLIST on the invocation line.

out of memory - CLIST ra out of room. Break the list of fies in two.

Page A.20

DeSmet C Development Package, Version 2.

B. The ASM88 Assembly Language

1 Identifiers

Identifiers must star with a letter (A-Z, a-z , may contain digits, and have a
maximum length of 31 characters. Upper and lower case letters are distinct so
ABC, abc and Abc are three distinct identifiers.

B.2 Constants

Constants are binary, octal, decimal, hex, floating point, or string.

Binar constant: ddddb or ddddB where is 0 or 1.

Octal constant: ddddo or ddddO or ddddq or ddddQ where is between 0 and 7.

Decimal constat: (- J ddddd where is between 0 and 9.

Hex constant: ddddh or ddddH where is 0 to 9 , a to f, or A to F.

Floating constant: (- J ddd (. dddJ ((+ 1- J EddJ where is between 0 and 9.

String constant: ' dddd I where is \n or \N for LF, \ t or \ T for TAB , " for the
single quote, \000 where the 000 must be octal digits and the result is the
corresponding character, or any other character.

After a DD (define double-word) mnemonic, constants that contain a period or '
exponent are single precision floating point. Other constants are signed four
byte integers. After a DQ (define quad-word) mnemonic, constants are
double precision floating point. A string constant after DB may have up to
SO characters. In any other place, constant expressions are allowed and the
result has a range of 0 to 65535. There is no warning on overfow.

Page B.1

DeSmet C Development Package, Version 2.

3 Expressions

All expressions operate on unsigned 16 bit constants. There is no warning when
overfow occurs. Caution: multiplying or dividing negative constats wil not give
the expected results. 3/- is not 3.

The operators are listed in order of precedence.

Registers

== !=

binar and.

equality test and inequality test. Result is 0 (false) or
I (tre).

plus and minus.
multiply and divide.
(& and offset are the same). plus minus not exclusive-
or.

+ -* /

& offset + -

! -

The 8086 has eight fairly general purpose registers anclfQur segment registers. All
registers are 16 bits wide.

General Registers

The following registers can be used in arithmetic or whatever but all have some
specialized use.

Some instructions have shorter forms using AX so AX is usually heavily
used as an accumulator. MUL and DIV require AX. IN and out use AX.
Used for addressing or for general purposes.
Used by LOOP and JCXZ. Also used to contain a shift count.
Used by MUL and DIV. Also used for varable port IN and OUT.
Used for addressing and string instructions.

Used for addressing and string instructions.
Used as a stack pointer to access locals and arguments.

Caution: C programs require BP to be preserved across calls.
The stack pointer.

Used by CALL and RET. Be very careful when manipulating SP.

Page B.

DeSmet C Development Package, Version 2.

Byte Re isters

Each byte in the first four general registers can be addressed separately.

AH is the high byte of AX AL is the low byte. BX, CX, and DX are similar.
The byte registers are: AH, AL, BH, BL, CH, CL, DH and DL.

Segment Registers

Points to the data segment. The initialization code makes DS address the
data in DSEG. All memory references that are not relative to BP and that
do not include an explicit segment register override, refer to the segment
addressed by DS.
Points to additional data segment. C only uses ES when doing a move.
The string instrctions (movsb cmpsb etc.) implicitly reference ES:(DI)
for the target. ES may be changed by any routine and is generally used to
address data outside of DSEG and CSEG.
Points to stack segment. C initialization sets SS to DS. Ths equivalence is
important for C programs so that they can create pointers to arguments or
locals which are on the stack. When it is necessary to change a load of
SP must immediately follow.
The code segment. CS is set to CSEG by initialization.

BA Addressing Modes

Only certain registers can be used to reference memory. The following are the
permissible combinations.

(BX+SI+displacement)
(BX+DI+displacement)
(BP+SI+displacement)
(BP+DI+displacement)
(SI+displacement)
(DI+displacement)
(BP+displacement)
(BX+displacement)
(displacement)

Names can be included in an address, e.g. blap (BX). The offset of the name is
simply added to the displacement.

Page B.3

DeSmet C Development Package, Version 2.5

Addresses that include BP are assumed to be SS relative. Other addresses are
assumed to be in DSEG, addressed by DS. To override this assumption, prefix an
address with 'DS:

, '

ES: SS: or CS: The assembler automatically provides the
prefix necessary for varables declared in CSEG.

Sample Addresses

hello
save
again: mov

mov
mov
mov
mov
mov
mov
mov
mov

Hello ' , 0

save, 99
hello+3, '
bx,
hello (bxJ

, , ! '

ax, offset again
, ax
ax,
es, ax
ax, es : (bx+4

imoves 99 to save
changes ' Hello ' to I Helpo '

isets bx to 4
changes I Helpo I to ' Help!'
imoves offset of again to ax
imoves ax to save
sets ax to zero
sets es to ax which is zero
imoves word at 0:8 to ax.
offset of NMI interrupt.

B.5 8086 Flags

The flags are set 1) directly, 2) as side effects of arithetic instructions, and 3) by
POPF (pop flags) and lRET (interrpt return). , If you do a PUSHF (push flags)
followed by a POP, they wil appear as a word with the following format:

--

I X I X I X I X I OFI DFI IFI TFI SFI ZFI X I API XI PFI X I CFI

--

carr flag. Set by arithmetic instructions to indicate unsigned overfow.
The car flag is not set by INC and DEC. Can be set with STC and turned
off with CLC.
parity flag. Set by arithmetic instructions to indicate parity. On for zero

parity which means an even number of bits are on in the result.
auxilar car flag. Used in BCD arithmetic.
zero flag. Set to 1 or tre if the result of arthetic instrction is zero.
- sign flag. Set by arthetic instrctions if the sign (highest) bit is on.
trap flag. Set by debuggers to cause single stepping. Can only be set by
IRET.

Page

DeSmet C Development Package, Version 2.5

interrpt enable flag. Set by STI, turned off by CLI and interrpt.
direction flag. Determines direction of string instructions. Set off, which
means increasing SI and DI, by CLD. Set on by STD.
overfow flag. Indicates signed overfow. True if the high order (sign) bit
was changed by overfow.

6 Address Expressions

Address expressions follow normal 8086/88 rules. For example:

(234)
DS: (0)
(BP+98)
variable
variable+22
variable (22)
variable (BP+22)
ES :variable (BP) +22

7 Address Typing

If an instrction includes a register, the type of the register determines the type of
the operation. If no register is present, the type of a variable is used. If neither is
present or the type of the variable is incorrect, the key-words BYTE, WORD
DWORD, QWORD or TBYTE must be used. BYTE means the operand has a
length of one byte, WORD means two bytes, DWORD means four bytes , QWORD
means eight bytes and TBYTE means ten bytes.

Examples:

MOV

MOV
INC
FMUL

(4 4) , AX
FOO, 1
WORD ES: (BX)
QWORD (BP+22)

8 Comments

A non-quoted semi-colon causes the rest of a line to be ignored.

Page B.

DeSmet C Development Package, Version 2.5

9 Assembler Directives

Directives may be in either upper or lower case.

Equate: identifier EQU expression

Equates are not evaluated until used so they may contain any sort of expression or
mnemonic.

LF equ OaH
PORT equ 201H

Include: INCLUDE "fiename

The indicated fie is included in the source.

Even: EVEN

Even forces even alignment by inserting a zero byte if required. Words should be
on even boundaries on the 8086 for improved performance. On the 8088 it does not
make any difference.
Public: PUBLIC identifier (:BYTEIWORD etc.) (,identifier...

Public declares that the listed variables are public. If an identifier is not defined in
the fie , it is assumed to be external. This allows the same fie containing PUBLIC
declarations to be included in all of the modules of a system.

An identifier may be followed by a colon and the keyword BYTE, WORD
DWORD, QWORD, or TBYTE. This allows a type to be associated with an
external variable. The placement of PUBLIC statements is important. They must
be in the same segment (DSEG or CSEG) as the symbols they name. In addition
the PUBLIC for a symbol must not follow its definition.

Dseg and Cseg: DSEG or CSEG

The DSEG directive indicates that data follows and the CSEG directive indicates
that code follows. The default is DSEG. DSEG and CSEG directives may be placed
anywhere but all code must follow a CSEG and all data must follow a DSEG. There
is no support for more than these two segments.

Page B.

DeSmet C Development Package, Version 2.

End: END

The END statement is optional and does nothing.

10 Reserving Storage

Bytes, words, double-words and quad-words are declared with the DB, DW, DD
and DQ directives.

(label (:)) DB I OW I DO I DQ value (, value)...

Values are truncated to bytes within DB , words within DW and double-words
within DD. The exception is the form

DB ' string of any length' , a

DD values may be either binary (without a period or 'E' exponent) or single
precision floating point. DQ values are always floating point.

Storage can be reserved with RB and RW.

(label (:)) RB or RW expression

Reserves the indicated numer of bytes or words. They are initialized to zero at run
time. Caution: RB's and RW's are moved to high memory so they wil not be
adjacent to the DB' , DW' , DD' , and DQ's they are declared next to.

11 Differences Between Intel ASM86 and ASM88.

Code Macros, MPL, SEGMENT etc. are missing.
The public label MAIN- must be declared somewhere in a program;

identifies the initial entry point.
Jump optimization is performed. This means that the assembler assembles
JMP as a two byte jump when possible and that jump relative to an address
over 128 bytes away is turned into a jump around ajump.For example, a JZ to
a label more than 128 bytes away would become a JNZ around a IMP.
DQ' s values are always floating point.
Eight byte binary is not supported.
The word 'POINTER' (or ' PTR') is not used. An anonymous variable is
WORD (BX)' intead if 'WORD PT (BX)'. The mnemonics LCALL , LIMP
and LRET are used for the long forms of CALL, JMP and RET.

Page B.

12 8086 Instrctions

DeSmet C Development Package, V2.

B . 12. 1 Elements of Instructions

The following is a description of the various types of operands:

reg
breg
wreg
segreg

regrm
constant
label

Any general or byte register can be used.
Any byte register.
Any general register.
Any segment register.
A memory reference.
Any general register or memory reference.
A constant expression.
The label of a statement.

B . 12.2 Instrctions

AAA

AAD

AAM

AAS

ADD

ascii adjust for addition. This instrction fixes AL after two ascii digits
have been added.

ascii adjust for division. AH is multiplied by 10 and added to AL.

ascii adjust after multiply. AL is divided by 10. The result goes in AH
and the remainder into AL.

ascii adjust after subtract. Repairs AL when AL is the result of ascii
subtraction.

Adds the right operand to the left operad. The ags are set.

ADD AX I AL constant
ADD regrm,reg I constant
ADD reg,regrm

add
add
add

ax, ax
aI, harry (bp+55 J
word (bp+5J, a

Page B.

ADC

CBW

CLC

CLD

CLI

CMC

CMP

DeSmet C Development Package, V2.5

Adds the right operand and the carr bit to the left operand. The flags
are set.

ADC AX I AL constant
ADC regrm,reg I constant
ADC reg,regrm

adc
adc
adc
adc

ax, ax
al, harry (bp+55)
word (bp+5), 0
ax, ax

sign extend AL into AX.

clear carr flag.

clear direction flag.

clear interrpt enable flag. Disables interrpts.

complement car flag.

Compares operads. The flags are set the same as for SUB.

CMP AX I AL constat
CMP reg,regrm

crnp
crnp
crnp
crnp

ax, ax
al, harry (bp+55)
word (bp+5),
ax, ax

Page B.

CMPSB
CMPSW

CALL

CWD

DAA

DAS

DEC

DIV

ESC

DeSmet C Development Package, V2.

compare byte at DS:SI TO ES:DI. Increment SI and DI.
compare word at DS:SI to ES:DI. Add 2 to SI and DI. If the direction
flag is on, registers are decremented instead of incremented. These
instructions are usually used with a REP, REPZ or REPNZ prefix.

Pushes the address of the next instruction and jmps to the indicated
address. Call's can be direct to a label or indirect through a word
register or a word in memory.

CALL label I regrm

call laba
call bx
call word es: (bxJ

sign extend AX into DX:AX.

decimal adjust after add. Adjusts AL after packed addition.

decimal adjust after subtract. Adjusts AL after packed subtrction.

Decrements the operand. The flags other than car are set.

DEC wreg I regrm

dec
dec
dec chr

Divide AX by byte operand with result in AL and remainder in AH or
divide DX:AX by word operand with result in AX and remainder inI)X. "
DIV regrm

div
div vara

triggers the SOS7. If there is no SOS7, ths instruction should not be
used. The constant/S is added to the esc instrction. The constat mod
is the middle 3 bits of the rim.

ESC constant,

Page B.10

HLT

IDIV

IMUL

INC

INT

DeSmet C Development Package, V2.5

stops the processor. The processor stops until an external interrpt

occurs.

Integer divide AX by byte operand with result in AL and remainder in
AH or integer divide DX:AX by word operand with result in AX and
remainder in DX.

IDIV regrm

Integer multiply AL by byte operand with result in AX or integer
multiply AX by word operand with result in DX:AX.

IMUL regrm

input from a port into AL or AX. A constant port must be in the range
o to 255. The use of DX for port allows addressing all 65535 ports.

IN AL I AX,constant
IN AL I AX

ax

Increment the operand.

INC wreg I regrm

inc
inc chr

cause a software interrpt. The int instrction causes the execution of

the associated interrpt routine. Interrpts are the usual way to call the
operating system from the assembler. An interrpt pushes the flags
pushes CS, pushes IP disables interrpts and LJMP's to the address at
O:interrpt number times 4. The constant must be in the range 0 to 255.
Interrpt 3 generates a one byte instrction. Debuggers use interrpt

for breakpoints. A program run under DDT86 or DEBUG can use an
int 3' to call the debugger.

!N constant

int
int

OC1H

Page B.11

DeSmet C Development Package, V2.5

INTO interrpt on overfow. Cause an interrpt 4 if the overfow bit is set.

IRET return from an interrpt.

JB/ C/N AE jump if below/car/not above or equal.
JBE/NA jump if below or equal/not above.JE/Z jump if equal/zero.
JLlNGE jump if lowerlnot greater than or equal to.
JLE/NG jump if not less than or equal tolnot greater.
JNB/ AE jump if not belowlabove or equal.
JNBE/ A jump if not below or equal/above.
JNE/NZ jump if not equal/not zero.
JNL/GE jump if not lowerlgreater than or equal to.
JNLE/G jump if not less than or equal to/greater.JNO jump if no overfow.
JNP/PO jump if party odd.JNS jump if not signed (positive).JO jump if overfow.
JPIPE jump if party even.JS jump if signed (negative).

The words 'above ' and 'below ' refer to unsigned comparisons. The words 'greater
and 'less ' refer to signed comparsons.

ASM88 wil turn a jump relative into the five byte equivalent if the taget is out of
range.

JCXZ jump if CX is not equal to zero.

JCXZ label

JMP jump. Imp s to a label wil generate either the two or three byte form
depending upon the distance of the label. Imp can be direct to a label
or indirect though a word register or a word in memory.

JMP label I regrm

jmp laba
jmp bx
jmp word es: (bx)
jmp laba (bx)

Page B.12

LAHF

LCALL

LES

LDS

LEA

LJMP

DeSmet C Development Package, V2.5

load AH from flags. The format of AH is:

long call. LCALL pushes the CS , pushes the instruction pointer, and
does a long jump indirect through memory. The memory must
contain two words: the new instruction pointer and the new CS.

LCALL rm

lcall laba (bx)

loads a register (usually an index register - BX SI or DI) and ES. It is
used to form a long pointer so that data outside of DSEG and CSEG
can be addressed.

is the same except that DS is loaded instead of ES. As always, the
offset value in memory must precede the segment value.

LDS wreg,regrm
LES wreg,regrm

Ids
les

bx, vara
di, vara

loads the offset of the referenced memory location into a register.

LEA wreg,

lea
lea
mov

ax, (si+di+44)
ax, vara
ax, offset vara ; same effect as above

long jump. Ljmp s can only be indirect through memory. The
memory must contain two words: the new instruction pointer and the
new CS.

LJMP label

Page B.l3

LOCK

DeSmet C Development Package, V2.

Lock the bus. LOCK demands a bus lock for the following
instruction. Usually used with XCHG to implement semaphores.

LOCK instruction

mov al,
lock xchg laba, al

LODSB
LODSW

load byte at DS:SI into AL. Increment SI.
load word at DS:SI into AX. Add 2 to SI.

If the direction flag is on, registers are decremented instead of
incremented. These instructions are usually used with a REP, REPZ
or REPNZ prefix.

lodsb
rep lodsw

LOOP decrement CX and jump if CX not equal to zero.
LOOPZ!E decrement CX and jump if ex not zero and the zero flag is set.
LOOPNZ!E decrement CX and jump if CX not zero and the zero flag is cleared.

LOOP, LOOPZ all decrement ex , check it for zero and if not zero
do the jump. LOOPZ and LOOPNZ also check the zero flag.

LOOP label
LOOPZlE label
LOOPNZlE label

LRET perform a long return. Assumes the procedure was called with an
LCALL. Both the instruction pointer and the new CS must be on the
stack. The optional constant is added to SP after the return address is
removed. Languages other than C use this to remove parameters
from the stack. C has the caller remove parameters so that a variable
number of parameters can be supported.

LRET I constant

Page B.14

MOV

MOVSB
MOVSW

MUL

OUT

DeSmet C Development Package, V2.5

The contents of the right operand are moved to the left operand.

MOV segreg,regrm
MOV regrm segreg I reg
MOV reg,constant I regrm
MOV constant

mov ax,
mov ex, ds
mov es, ex
mov vara, ax
mov si, vara
mov bl, varb (si+di)

move byte from DS:SI to ES:DI. Increment/decrement SI and DI.
move word from DS:SI to ES:DI. Add/subtract 2 tolfrom SI and DI.
If the direction flag is on , registers are decremented instead of
incremented. These instructions are usually used with a REP, REPZ
or REPNZ prefix.

rep
movsb
movsw

Multiply AL by byte operand with result in AX or multiply AX by
word operand with result in DX:AX.

MUL regrm

mul
mul vara

Output a byte or word to a port. A constant port must be in the range
o to 255. The use of DX for port allows addressing all 65535 ports.

OUT constant AL I AX
OUT DX AL I AX

out
out

dx, ax
33, al

Page B.15

NEG

NOP

NOT

POP

POPF

PUSH

DeSmet C Development Package, V2.5

Negate the operand.

NEG regrm

neg
neg vara

do nothing in three cycles.

Invert the bits of the operand.

NOT regrm

not
not vara

logical or of the operands. Flags are set.

OR AX I AL constant
OR regrm constant I reg
OR reg,regrm

ax, ax
aI, harry (bp+55)

The word contents of SS:SP are moved to the operand and the stack
pointer is incremented by 2. CS cannot be popped as this would kil
the system.

POP wreg I regrm Isegreg

pop
pop
pop

total
word es: (bx)

The flags are popped off of the stack.

Two is subtracted from SP and the word operand is moved to SS:SP.

PUSH wreg I regrm I segreg

push ax
push total

Page B.16

PUSHF

REP
REPZ

REPNZ

RCL

RCR

ROL
ROR
SAL

SHL

SAR

SHR

DeSmet C Development Package , V2.

The flags are pushed onto the stack.

decrement CX on each iteration and continue while not zero.
decrement CX on each iteration and continue while CX is not zero
and the zero flag is on.
decrement CX on each iteration and continue while CX is not zero
and the zero flag is off. These prefixes can only be used with the
string instructions; they cause the string instruction to be repeated.

REP instrction
REPZ instrction
REPNZ instruction

rep movsb
repz stosw

rotate left through carr. The carr bit ends up as the new low bit
and the high bit becomes the car bit.
rotate right through car. The carr bit ends up as the new high bit
and the low bit becomes the car bit.
rotate left. The high bit ends up in car and as the new low bit.
rotate right. The low bit ends up in carr and as the new high bit.
shift arithmetic left. The high bit goes to carry and the new low bit
becomes zero.
shift left. The high bit goes to carry and the new low bit becomes
zero.
shift arithetic right. The low bit becomes the carry bit, the high bit
is left alone (Le. the sign remains the same).
shift right. The low bit goes to car, the new high bit is zero.

RCL regrm l I CL
RCR regrm l I CL
ROL regrm, 1 I CL
ROR regrm l\ CL
SAL regrm,11 CL
SHL regrm, l I CL
SAR regrw, 1 I CL
SHR regrm l I CL

shr
mov
shr

al,
el,
vara, el

Page B.17

RET

SAHF

SBB

SCASB
SCASW

STOSB
STOSW

DeSmet C Development Package, V2.

Return from a call. Only the instruction pointer is on the stack. The
optional constant is added to SP after the return address is removed.
Languages other than C use this to remove parameters from the stack.
C has the caller remove parameters so that a variable number of
parameters can be supported.

RET I constat

ret
ret

New flags are loaded from AH. The format pf AH is:

Subtract the right operand and the carr bit from the left operand.

SBB AX I AL constant
SBB regrm,constant I reg
SBB reg,regrm::;:nl.

sbb
sbb
sbb
sbb

ax, ax
al, harry (bp+55 J
word (bp+5 J , a
ax, ax

compare AL to byte at ES:DI. Increment DI.
compare AX to word at ES:DI. Add 2 to DI.

If the direction flag is on, registers are decremented instead of
incremented. These instructions are usually used with a REP, REPZ or
REPNZ prefix.

store AL at ES:DI. Increment DI.
store AX at ES:DI. Add 2 to DI.

If the direction flag is on, registers are decremented instead of
incremented. These instrctions are usually used with a REP, REPZ or
REPNZ prefix.

Page B.18

STC

STD

STI

TEST

WAIT

XCHG

XLAT

DeSmet C Development Package, V2.

set the carry flag.

set the direction flag.

set interrpts enabled.

logically ands the operands and sets the zero flag if no bits remain on.
The operands are unchanged.

TEST reg,constant I regrm
TEST ax constant

, TEST regrm constant I reg

test
test
test
test
test

al,
ax, 80h
chr, 44h
ax, vara
vara, ax

halts the processor until the SOS7 is ready for an instruction.

The contents of the two operands are exchanged. XCHG is often used
to implement semaphores.

XCHG AX reg
XCHG reg,regrm
XCHG regrm reg

xchg ax,
xchg al, ah
xchg vara, si

Move the contents of the byte at BX+AL into AL.

XLA T rm

Page B.19

XOR

DeSmet C Development Package, V2.5

Performs an exclusive or on the operands. The reslilt replaces the left
one. Flags are set.

XOR AX I AL constant
XOR regrm constant I reg
XOR reg,regrm

xor
xor

ax, ax
al, harry (bp+55)
word (bp+5),
ax, ax

xor
xor

Page B20

1'" '

DeSmet C Development Package, V2.

B . 13 Floating Point

The 8087 is the numerics co-processor for the 8086 and 8088. It extends the 8086
architecture by adding instructions for fast and accurate floating point operations.
Adding an 8087 to an IBM PC or other 8088 or 8086 based computer that has
provision for an 8087 is usually as simple as purchasing the chip and plugging it in.

The 8087 contains an eight element stack. The stack top is referred to as 'ST'.
Other elements are referred to as 'ST(i)' where i is between 0 and 7 and is the index
of the element. ST(O) is the same as ST. The usual use ofthe floating point stack
to push two elements and then do a binar operation on them but there are several
variations on instrction types. Each element of the stack is maintained as an 80 bit
extended precision value. The extra precision minimizes round off errors.

The 8087 context includes both the floating point stack and three status registers.
The entire context, as saved by FSA VE and restored by FRSTOR is:

control word
status word

tag word
bits a to 15 of IP

IP 19-16 I a lop code
bits a to 15 of

OP 19-16 I zeros

bi ts a to 1 5 of ST
bits 16 to 31 of ST

bits 32 to 47 of ST

bits 48 to 63 of ST

S I exponent of ST

ST(1), same as ST

I ST(7),
same as ST

Page B21

DeSmet C Development Package, V2.

IP stands for instruction pointer and is the 20 bit address of the last instruction. OP
is the 20 bit address of the last operand referenced. S is the sign bit.

The portion of the state other than the eight stack elements is called the environment
and can be loaded with FLDENV and stored with FSTENV.

13. 1 Control Word

The control word can be loaded with FLDCW and stored with FSTCW and has the
following format:

reserved.

infinity control. 0 is projective which is default. 1 is affine.

rounding control. 0 is round to even (default). 1 is round down. 2 is round
up. 3 is truncate.

precision control. 0 is single precision, 1 is double precision and 2 is full
precision which is default.

IBM interrpts enable mask. 0 means disabled which is default.

precision exception mask. All masks are default 1 which means apply the
chip default action. A zero means the exception should trigger a user written
exception handler procedure.

underfow exception mask.

overfow exception mask.

zero exception mask.

denormalized exception mask.

invalid operation exception mask.

Page B22

DeSmet C Development Package, V2.5

13.2 Status Word

The status word has the following format:

busy. One if 8087 is executing an instruction.

CO are the completion codes. These are discussed below.

index of stack top element.

interrpt request. On if an 8087 interrpt is pending.

precision exception.

underfow exception.

overfow exception.

zero divide exception.

denormalized exception.

invalid operation exception.

13.3 Tag Word

The tag word has the following format:

g(7) Itag(6)l g(S)l g(4)ltag(3)ltag(2) Itag()ltag(O)1

tag = 00 if valid,
01 if zero,
10 if not a number, infmity or unnormal , or
11 if empty.

Page B 23

DeSmet C Development Package, V2.5

13.4 Condition Codes

Following an FCOM (compare), the condition codes are:

C3 C2 CO

o 0 0 ST ;: source.
o 0 1 ST .: source.
1 0 0 ST == source.
1 1 1 the relationship is unkown.

The status word is aranged so the following code sequence may be used.

FSTSW STAT
FWAIT
MOV AH, BYTE STAT+l
SAHF

; store the 8087 status word
;wait for the store
; load hi byte of status into AH.
; load flags from AH.

JB.. .
JBE.. .
JA.. .
JAE.. .
JE.. .
JNE .. .

; jump
; jump
; jump
; jump
; jump
; jump

if ST -(source
if ST -(= source
if ST ;: source
if ST ;:= source
if ST == source
if ST ! = source.

The FXAM instrction shows if the stack top is an infnity or unnormal.

C3 C2C1 CO
o 0 0 0 + unnormal.
o 0 0 I + not a number.
o 0 1 0 - unnormal.
o 0 I 1 - NAN.
o 1 0 0 + normal.
o 1 0 1 + infinity.
o I 1 0 -, normal.
o I I I - infinity.
1 0 0 0 + zero.
1 0 0 1 empty.
1 0 1 0 - zero.
I 0 1 1 empty.
1 1 0 0 + denormalized.
1 1 a 1 empty.
1 1 1 0 - denormalized.
1 1 1 1 empty.

Page B24

13.58087 Instrctions

DeSmet C Development Package, V2.

w stands for 16 bit word, d stands for 32 bit short, q stands for 64 bit quad word and
i stands for an index in the range of 0 to 7.

F2XMl

FABS

FADD

FADDP

FBLD

FBSTP

FCHS

FCLEX
FNCLEX

ST = 2**ST-

f2xml

ST = absolute value(ST)

fabs

add real.

fadd
fadd ST, ST (i)
fadd ST(i),
fadd d
fadd q

iST(l)=ST(l)+ST. pop stack.

add real and pop the stack.

faddp ST (i)

push a BCD operand onto the stack.

fbld q

store and pop a BCD value.

fbstp q

change the sign of the stack top

fchs

clear 8087 exceptions. The 'N' form has no WAlT.

fclex
fnclex

Page B.25

DeSmet C Development Package, V2.

FCOM compare reals.

fcom ; compare ST , ST (1)
fcom ST(i) ; compare ST to ST (j.
fcom d ; compare ST to float
fcom q ; compare ST to double

FCOMP compare real and pop stack.

fcomp ; compare ST to ST (1)
fcomp ST (i) ; compare ST to ST (i)

fcomp ; compare ST to float
fcomp ; compare ST to double

FCOMPP compare real and pop stack twice.

fcompp ; compare ST : ST (1). pop both.

FDECSTP increment stack top pointer.

fdecstp

FDISI
FNDISI

disable interrupts. The 'N' form does not WAIT

fdisi
fndisi

FDIV real divide.

fdiv
fdiv
fdiv
fdiv
fdiv

; ST (1) =ST (1) 1ST.
ST, ST(i)
ST(i),

pop stack.

FDIVP real divide and pop the stack.

fdivp ST(i),

Page B.

FDIVR

FDIVRP

FENI
FNENI

FFREE

FIADD

FICOM

FICOMP

FIDIV

DeSmet C Development Package, V2.

real reverse divide.

fdivr
fdivr
f di vr
f di vr
fdivr q

iST(l)=ST/ST(l).
ST, ST (i)

ST(i),

real reverse divide and pop the stack.

fdivrp ST(i),

enable 8087 interrpts. The 'N' form does not WAIT.

feni
fneni

free an 8087 stack element.

ffree ST (i)

add an integer to the top os stack

fiadd w
word
fiadd d

iadd an 8086

add a long

compare integer to top of stack.

ficom w
ficom d

icompare to 8086 word
compare to a long

compare integer to top of stack and pop.

ficomp w
ficomp d

icompare to 8086 word
compare to a long

divide top of stack by integer..

fidiv w
fidiv d

idivide by 8086 word
idivide by a long

Page B.

FIDIVR

FILD

FIMUL

FINCSTP

FINIT
FNINIT

FIST

FISTP

FISUB

DeSmet C Development Package, V2.5

ST = integer ST.

fidi vr
fidivr d

;divide 8086 word by ST
;divide a long by ST

push an integer.

fild w
fild d
fild q

;load an 8086 word
; load a long
; load an 8 byte integer

multply ST by an integer.

fim1,l w

fimul d
;multiply-by an 8086 word.
;multiply by a long

increment the stack pointer.

fincstp

initialize the 8087. This instrction should precede any other 8087
instrction in a program. The 'N' form does not WAIT.

finit
fninit

store an integer.

fist w
fist d

; store an 8086 word.
; store a long

store an integer and pop the stack.

fistp w
fistp d

; store an 8086 word.
; store a long

subtract an integer from top of stack.

fisub w
fi sub d

;subtract 8086 word
; subtract long

Page B.

FISUBR

FLD

FLDCW

FLDENV

FLDLG2

FLDLN2

FLDL2E

FLDL2T

FLDPI

FLDZ

DeSmet C Development Package, V2.5

ST = integer - ST.

fisubr w
fisubr d

isubtract ST from 8086 word
subtract ST from long

push a floating point value.

fld ST(i)
fld d
fld qfld tbyte t
load processor control word

fldcw w

load 8087 environment from memory.

fldenv env

load log base 10 of 2.

fldlg2

load log base e of 2.

fldln2

load log base 2 of e.

fld12e

load log base 2 of 10.

fld12t

load PI.

fldpi

load zero.

fldz

Page B.29

FLDl

FMUL

FMULP

FNOP

FPATAN

FPREM

FPT AN

FRNDINT

FRSTOR

DeSmet C Development Package, V2.

load one.

fldl

real multiply.

fmul
fmul S'r, ST(i)
fmul ST(i),
fmul d
fmul q

iST(l)=ST(l)*ST. pop stack.

multiply real and pop the stack.

fmulp ST (i) ,

no operation.

fnop

parial arctagent.

fpatan

partial remainder.

fprem

partial tangent

fptan

round to integer.

frndint

restore 8087 state

frstor state

Page B.30

FSA VE
FNSA VE

FSCALE

FSQRT

FST

FSTCW
FNSTCW

FSTENV
FNSTENV

FSTP

DeSmet C Development Package, V2.

save entire 8087 state. The 'N' form does not WAIT.

fsave state
fnsave state

binar scale ST by ST(l).

fscale

take square root of ST.

fsqrt

store real.

fst
fst
fst

ST (i)

store control word. The N' form does not WAIT.

fstcw w
fnstcw w

store the 8087 environment. The ' form does' not WAIT.

fstenv env
fnstenv env

store real and pop.

fstp ST(i)
fstp d
fstp q
fstp tbyte t

Page B.

FSTSW
FNSTSW

FSUB

FSUBP

FSUBR

FSUBRP

FTST

FW AIT

FXAM

DeSmet C Development Package, V2.5

store status word. The ' N' form does not WAIT.

fstsw w
fnstsw w

subtract real.

fsub
fsub ST, ST (i)
fsub ST(i),
fsub d
fsub q

; ST (1) =ST (1) -ST . pop stack.

real subtract and pop the stack.

fsubp ST (i) ,

real reverse subtract.

fsuhr
fsubr
fsubr
fsubr
fsubr

;S':(l) =ST-ST (1) .
ST, ST(i)
ST(i),

. .

real reverse subtrct and pop the stack.

fsubrp ST (i) ,

compare ST to zero.

ftst
wait for 8087. Same as WAIT.

fwait

set condition codes from top of stack.

fxam

Page'B.32

FXCH

DeSmet C Development Package, V2.5

exchange stack elements.

fxch
fxch ST(i)

; exchange ST and ST (1)

FXTRACT decompose into exponent and significand.

FYL2X

FYL2XPl

fxtract

ST(l) = ST(I) * log 2 ST.

fy12x

ST(I) = ST(I) * log 2 (ST+I).

fy12xpl

Page B.

DeSmetC Development Package, V2.

Large Case Option

Introduction

This section describes the Large Case Option of the DeSmet C Development
Package. Its features include:

Full I-megabyte addressabilty via 32-bit pointers.

Static variables combined within a single data-segment to speed access.

The Large Case Option addresses the needs of programs that fit neither the standard
Small Case restrictions (64K of code, 64K of data and stack), the partitioning
requirements of overlays, nor the communication limitations of the exec function. .

Large Case differs from Small Case in two aspects: pointers are four bytes long
(segment:offset) rather than two bytes (offset), and function calls are inter-segment
(segment:offset) instead of intr-segment (offset).

There are stil some memory restrictions with Large Case. No derived data object'
- arry or strcture - may be larger than 64K. The total size of all s tat i c and
global fundamental objects (char, int, ...) must be less than 64K. The
restriction on static and global fundamental objects has to do with effciency-
they can be accessed with the sae speed as Small Case.

Large Case programs are approximately 15 per-cent larger and slower than their
Small Case equivalents.

WARNING: LOGIC ERRORS IN PROGRAMS
USING 32-BIT POINTERS MAY BE
HAZARDOUS TO YOUR COMPUTER!

Programs using 32-bit pointers can 'change any byte of memory via
pointers. Thus, improperly initialized pointers can change critical
portions of MSDOS, possibly causing corruption of, or damage to yourDISKS.
In addition, corruption of the return address or function address can
transfer control' to an arbitrary location in memory, thereby activating
code that may cause corruption of, or damage to your DISKS.

Page

DeSmet C Development Package, V2.

Disk' Contents

. La'ge.Case ophon Disk contains:

;- '

:J:C88'
:EXE:' ,'-f mpiler Pass i

GEN.EXE Compiler Pass 2
ASM88.EXE Assembler (Compiler - Pas

;'BB'iND;EXE Object File Linker
LlB88;EXE " Object File Librarian
PROFjLE EXE Program Execution Profier
BEXEC. exec () and chain () functions
BCSTDIO. Standard Library with software floating point

:; ,

BCSTDI07's Standard Library w ih 8087 support
" PCI0;A Standard Screen interface (Lage Case Assembler)

If you have purchased the Source Debugger Option, you wil receive a 2nd disk with:

D88.EXE Source Level Debugger

Insta1lng the Large Case Option

To install the Large Case Option, copy the contents of the Large Case Option
distribution disk to your working directory. The compiler passes wil replace those
of your current release.

If you have an 8087, delete the fie BCSTDIO.S from your working directory and
rename BCSTDI07.S to BCSTDIO.S. Otherwise, delete BCSTDI07.S from your
working directory.

To test the installation, use the fie LIFE.C from your original distribution disk #2.
Compile LlFE.Cby entering

c88 life -b

The -b switch wil compile in the big mode. To bind with the Large Case PCIO.
enter

asm88 pcio -b
bbind li fe pc io

The -b switch instructs the assembler to emit the correct object code. If you forget
the -b switch, BB.ND wil complain about mixing large and small case object fies.

Page 2

DeSmet C Development Package, V2.

Converting To Large Case

" . ,"'

J::: ;:1:h '

With most programs, just recompile with the -b switch on, f;'-! ysin.gJ INQr
Remember that all the object fies must have been compiled orassemb 5t,:\Vip1'he -switch.

" . :' . ' ! . ;.

Most of the diffculty in converting to La ge Case is in the are,a of pointers ' tn Small
Case, pointers and in t 's are the same size if you don ' , declare a fun igri to

return a pointer there is no hann done. The default. in t return of the functiQnjs thesame size as a pointer.
In Large Case, however, pointers are four bytes and ints e two byteslQog;; You
wil get an error message if you try to assign an int or an unsigned to a pointer,
or vice versa.

The things to watch out for are:

functions returning pointers must be declared before use.

fopen () now returns a pointer, and must be declared before being called.

FILE *fopen 0 ; 1* Assumes STDIO.H included

The pointer is used by fclose (), fgetc (), fgets

() ,

fprintf 0, fputc 0, fputs 0, fread 0, fscanf 0,
fseekO, fwriteO, getcO, getwO, putcO, putwO,ungetc () ;

open () stil returns, and the other I/O functions stil use, an into Note
that this means that fclose () and close () are not interchangeable.

This should make these functions more portable to other C environments

Large Case and Small Case object fies cannot be linked together.

* A long can be assigned to a pointer, and vice versa.

malloc () is slow as it calls DOS. This was done to leave as much space as
possible free for calls to exec () .

Page 3

DeSmet C Development Package, V2.

t.arge Case C8j

.'. ... ' ,

TPc9tg e 9ptionsuppo both small and large cas compilations. To compile
J'. Ca. Pr. use the bswitch, as

c88 blip -b

hyphen is optiQnat

ereare a, few pew error messages:

("- , .

ilegal intiiredion
" f

something other than a pointer has been used as a
point

ilegal index

1,
ig, ment

a pointer cannot be used as an ary index

only a pointer, long, or constant can be assigned to a
pointer. Note: this is a pass 2 error the -c(checkout
option) mtJstPc used to get the line number of the
error.

Large Case ASM88

ASM88 alSo supports iarge and smail case assembly. To assemble a large case
program, use the bswitch as

asm88 blip -b

The hyphen is optional.

' addition to the standard CSEG (Code Segment) and DSEG (Data Segment)
directives, there is a ESEG (Extra Segment) directive. CSEG and ESEG can be any
size, while DSEG is res ricted to 64K. CSEGis addressed withCS, DSEG with DS,
and ESEG with either DS or ES.. The Stack is a separte segment whose default size
is 8K (changeable using the -soption of BBIND). The Stack is addressed by SS.

The long call and return, LCALL and LRET, are normally used instead of CALL
and RET. You can mix the short and long forms of caWreturn in a progra, but
sure that each form of return is matched to the corresponding form of call.

The DO directive creates a long (4 byte) pointer

label DD zip, zap

Page 4

DeSmet C Development Package, V25'

::: . ' ;"" ,j.

t j

. .' ;,.- . - "' ' . . .: , ,

: ""ni;U

;,j;

;"jid b;;f!'

The Large Case Option is loaded into memory as foIlows:

' '

; ,ifii,,,,, ;iilj i;;) g1d h

CS-::
Program Segment Prefix

Code Segment i ..

:.

(CSEG)
7T:

' ,,~~~~~

InitializedArraYS&Structures

(ESEG)

Initialized Scalar & Static Data
(DSEG)

Un initialized DSEG

Un initialized ESEG

Stack

'"

d:::/ trt(, ilrr

,::;i

:- .

i'

.. ,

; J

L' i- ;:1i

DS-::

SS-::

All Assembly Language funct.ions must preserve BP and DS.

Page 5

DeSmetC DevelopmentPackage. V2.

:"". ," " , .

There, re-two ney/pr fix operators - SEG a':d . SEG issimilar to OFFSET except
t!M\ thf, mefit ofm ;\1zriabk' rat11er than the offset. a is special- a
:!0ig iJytefpOiri created (if needed) in , DSEG and its offset is generated. a is
normally used with LES to load a long (4'bytef phinter to a variable. For example:

:'i:

~~~~ ;: 

::H'

:' ~~~

Fi" iL "'1 He ld! (.

' ,

10, 0

D$EG
msgptr DD

CSEG
PUBLIC

main : push

;!!?/:- ';,

fjllih '

p':

;J2, :'1 ' lca'

' " .""',' .

mo\, 

mov
mov
mOV
push
push
leall
mov

les
push
push
leall
mov

push
push
leall

. : ... ' ' \ ; .. ! - .

o" . 
po'p
ltet,

\..

msg

main , putsBP 
BP SP '

-, 51 , msgplr. , '
f;S .
51 "

:, - ,,, '

puts
5P, BP

long ptr

AX, see; msg
E5, AX
51, offset msgE5 
puts
SP ,

; get segment

9'e t offset

51, ainsg

puts
5P, BP

eg: offset

amsg+2
amsg
pu t s

; seg
; offset

P i1?P -
BP 

" . ": :

Page 6



DeSmet C Development Package, V2.
: i I 

/: 

'iJ:

'" . -.:. ' . :. ::. , .::;

rTi''

To faciltate writing assembler modu at, anwpr with9.h a1r
Case programs, the builtin symbol LARGE ASEis ecog~jzed as:;
the value I if the -b flag is set, otherwis is zero.

,j!:'

l;:r.; -,:tJ1\j-,

,,: . : \ . :.:. , " "' . . . ' ' " . ,;: ' ' ' . .

The control directives IF, ELSE, and ENDIF have been added to 'support conditional
assembly. Any symbolic naD: set by ar, EQJ,dir,ed':ve can be used. Forexample: "

, ;,

; r""

" " '""

d\,-' /f)'

'', " .....,; 

CSEG
PUBLIC strlen
push xor AX, AX
inov BP 

strlen :

les
SL LOOP: cmp

ELSE
mov

SL LOOP: cmp
ENDIF'

inc
inc
jmp

SL RET: pop

lret

;; . . , .. ' ".

: I i

. ..! _. .

r f_.\i

:", .

LARGE CASE
BX, ( B!,+
BYTE' 'ES; ':BX1

:..

":i. .

p'O j,'nt to string
st for EOS

: r; . t. 
BX, (BP+4) ,
BYTE (BX), 0'

" ,

rf 

. .,: "

J.nt , to string
, i t " for EOS

SL RET

SLLOOP

length

LARGE CASE

ELSE
ret
ENDIF
END

When combining Lage Cae C88 and ASM88, keep the foll ing in mind:

* Long calls (LCALL) and returns (LRE) are used. ,
* With the standard PUSH BP/MOV BP;SP prolog,parameters start at (BP+6)
* Pointers are returned in ES:SI .

, ' , ' ,

* Static and fundamental data are placed in DSEG, structures and arrays inESEG 
Page 7



;\i?i::t:::;Qf

', .. , , .. ' ""

s'lfatn isJ1BjN IQ most respec" s,,B B NP is identical to

ij!) , ,.f;;:, il'n';:i'

: .' ' ': " ;,,

NI) t4Yr w fii iH) ase JbJeCrfii'

~~~

d libtarl

, " " " ('::":, ..,:: .' '" " :. . .

&l s BCSTplb. inst 4,\ f:CSrD.b.S. Re BCSTDI07.S to
'i

f1' you ?087

" ' '" , ;.;,'

;H:
ck S\ Jsj.~QQgij;':(&696t~ytes. ' hould be more than

YQU

.p'

p'v

~~~~

of local data ~The stack requirements

~~~~~

the,local d p.ce required for each active function call.

;:!t

, . ::," ' ;: . . , ", '

Sm;gh;J tlbraries, but'Nuii

. ' ' " ,." ,;. '" ~~~":/

Large
::;PPS:~ink u,p.port.

, " :;;.

;t!
'0,

' . ' , '

pag

&::,. "

